If \(\mathrm{P}_{1}\) and \(\mathrm{P}_{2}\) denote the lengths of the perpendiculars from the origin on the lines \(\mathrm{xsec} \alpha+\mathrm{ycosec} \alpha=2 \mathrm{a}\) and \(x \cos \alpha+y \sin \alpha=a \cos 2 \alpha\) respectively then \(\left[\left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)+\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)\right]^{2}\) is equal to \(\ldots \ldots\) (a) \(4 \sin ^{2} 4 \alpha\). (b) \(4 \cos ^{2} 4 \alpha\) (c) \(4 \operatorname{cosec}^{2} 4 \alpha\) (d) \(4 \sec ^{2} 4 \alpha\)

Short Answer

Expert verified
The short answer is: \[\left[\frac{P_1}{P_2} + \frac{P_2}{P_1}\right]^2 = 4\sec^2{4\alpha}\]

Step by step solution

01

Find the equation of the lines given

The given lines are: \(x\sec\alpha + y\csc\alpha = 2a\) \(x\cos\alpha + y\sin\alpha = a\cos{2\alpha}\)
02

Write the distance formula for the perpendiculars P1 and P2

The formula for the distance between a point (x₀, y₀) and a line Ax + By + C = 0 is given as: \(P = \frac{|Ax₀ + By₀ + C|}{\sqrt{A^2 + B^2}}\) As we are considering the perpendiculars from the origin, the point (x₀, y₀) is (0, 0).
03

Substitute the equations of the lines into the distance formula for P1 and P2

For line 1: \(P_1 = \frac{|2a|}{\sqrt{(\sec^2\alpha + \csc^2\alpha)}}\) For line 2: \(P_2 = \frac{|a\cos{2\alpha}|}{\sqrt{(\cos^2\alpha + \sin^2\alpha)}}\)
04

Simplify the expressions for P1 and P2

First, let's simplify the denominators using trigonometric identities: \(\sec^2\alpha = 1 + \tan^2\alpha\) \(\csc^2\alpha = 1 + \cot^2\alpha\) \(\cos^2\alpha + \sin^2\alpha = 1\) Now we have: \(P_1 = \frac{2a}{\sqrt{1+\tan^2\alpha + 1+\cot^2\alpha}}\) \(P_2 = a\cos{2\alpha}\)
05

Substitute the values of P1 and P2 into the given expression

The expression is given as: \(\left[\frac{P_1}{P_2} + \frac{P_2}{P_1}\right]^2\) Substitute the values of P1 and P2: \(\left[\frac{\frac{2a}{\sqrt{1+\tan^2\alpha + 1+\cot^2\alpha}}}{a\cos{2\alpha}} + \frac{a\cos{2\alpha}}{\frac{2a}{\sqrt{1+\tan^2\alpha + 1+\cot^2\alpha}}}\right]^2\)
06

Simplify the expression

Cancel out the common factors a and simplify the expression: \(\left[\frac{2}{\cos{2\alpha}\sqrt{2+\tan^2\alpha + \cot^2\alpha}} + \frac{\cos{2\alpha}\sqrt{2+\tan^2\alpha + \cot^2\alpha}}{2}\right]^2\) We notice that we have a sum of conjugates, so square the expression to eliminate the square roots: \(\left[\frac{2}{\cos{2\alpha}\sqrt{2+\tan^2\alpha + \cot^2\alpha}}\right]^2+ 2 + \left[\frac{\cos{2\alpha}\sqrt{2+\tan^2\alpha + \cot^2\alpha}}{2}\right]^2\)
07

Simplify the expression further and compare with the given options

Simplify the expression: \(\frac{4}{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}+2+\frac{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}{4}\) Multiply the last term by 4/4 to unify the denominators: \(\frac{4}{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}+2+\frac{4\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}{16}\) Add the terms: \(\frac{4+8\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)+4\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}\) Simplify the numerator: \(\frac{4\left(1+\cos^2{2\alpha}\right)\left(2+\tan^2\alpha+\cot^2\alpha\right)}{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}\) We know that \(1+\cos^2{2\alpha}=\sec^2{4\alpha}\) , So the expression becomes: \(\frac{4\sec^2{4\alpha}(2+\tan^2\alpha+\cot^2\alpha)}{\cos^2{2\alpha}(2+\tan^2\alpha+\cot^2\alpha)}\) Now, cancel the common terms in the numerator and denominator: \(\frac{4\sec^2{4\alpha}}{\cos^2{2\alpha}}\) This is equal to the given option (d). Therefore, the expression equals \(4\sec^2{4\alpha}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a square OPQR having the length of side a, where \(\mathrm{O}(0,0)\). The sides \(\underline{\mathrm{OP}}\) and \(\underline{\mathrm{OR}}\) are along the positive \(\mathrm{X}\) -axis and Y-axis respectively. If \(\mathrm{A}\) and \(\mathrm{B}\) are the mid points of \(\underline{\mathrm{PQ}}\) and \(Q \underline{R}\) respectively, then the angle between \(\underline{\mathrm{OA}}\) and \(\underline{\mathrm{OB}}\) would be \(\ldots \ldots \ldots\) (a) \(\cos ^{-1}(3 / 5)\) (b) \(\tan ^{-1}(4 / 3)\) (c) \(\cos ^{-1}(3 / 4)\) (d) \(\sin ^{-1}(3 / 5)\)

For the line \(\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right), \mathrm{m}\) and \(\mathrm{x}_{1}\) are fixed values, if different lines are drawn according to the different value of \(\mathrm{y}_{1}\), then all such lines would be \(\ldots\) (a) all lines intersect the line \(\mathrm{x}=\mathrm{x}_{1}\) (b) all lines pass through one fixed point (c) all lines are parallel to the line \(\mathrm{y}=\mathrm{x}_{1}\) (d) all lines will be the set of perpendicular lines

The equation of three sides of triangle are \(\mathrm{x}=2, \mathrm{y}+1=0\) and \(\mathrm{x}+2 \mathrm{y}=4\). The coordinates of the circumcentre of the triangle is (a) \((4,0)\) (b) \((2,-1)\) (c) \((0,4)\) (d) \((-1,2)\)

Find the equation of line passing through the point \((\sqrt{3},-1)\) and at a distance \(\sqrt{2}\) units from the origin. (a) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}-(\sqrt{3}+1) \mathrm{y}=4\) (b) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) (c) \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\) (d) \((\sqrt{3}-1) \mathrm{x}+(\sqrt{3}-1) \mathrm{y}=4\) or \((\sqrt{3}+1) \mathrm{x}+(\sqrt{3}+1) \mathrm{y}=4\)

\(\mathrm{A}(1,0)\) and \(\mathrm{B}(-1,0)\), then the locus of points satisfying \(\mathrm{AQ}-\mathrm{BQ}=\pm 1\) is \(\ldots \ldots\) (a) \(12 \mathrm{x}^{2}+4 \mathrm{y}^{2}=3\) (b) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=3\) (c) \(12 \mathrm{x}^{2}-4 \mathrm{y}^{2}=-3\) (d) \(12 x^{2}+4 y^{2}=-3\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free