Chapter 14: Problem 1325
Locus of midpoint of rod having length \(2 \mathrm{c}\) begins to slide on two perpendicular lines is... (a) \(x^{2}-y^{2}=c^{2}\) (b) \(x^{2}+y^{2}=c^{2}\) (c) \(x^{2}+y^{2}=2 c^{2}\) (d) \(x^{2}-y^{2}=2 c^{2}\)
Chapter 14: Problem 1325
Locus of midpoint of rod having length \(2 \mathrm{c}\) begins to slide on two perpendicular lines is... (a) \(x^{2}-y^{2}=c^{2}\) (b) \(x^{2}+y^{2}=c^{2}\) (c) \(x^{2}+y^{2}=2 c^{2}\) (d) \(x^{2}-y^{2}=2 c^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThree straight lines \(2 \mathrm{x}+11 \mathrm{y}-5=0,4 \mathrm{x}-3 \mathrm{y}-2=0\) and \(24 x+7 y-20=0\) (a) form a triangle (b) are only concurrent (c) are concurrent with one line bisecting the angle between the other two. (d) none of these
If the points \([k, 2-2 k],[1-k, 2 k]\) and \([-k-4,6-2 k]\) are collinear, the possible value of \(\mathrm{k}\) are (a) \(-(1 / 2), 1\) (b) \((1 / 2),-1\) (c) \(1.2\) (d) \(1.3\)
The in centre of a triangle whose vertices \(\mathrm{A}(2,4), \mathrm{B}(2,6)\) and \(\mathrm{C}(2+\sqrt{3}, 5)\) is.... (a) \([2+(1 / \sqrt{3}), 5]\) (b) \([1+\\{1 /(2 \sqrt{3})\\},(5 / 2)]\) (c) \((2,5)\) (d) None of these
For a \(+b+c=0\), the line \(3 \mathrm{ax}+4 \mathrm{by}+\mathrm{c}=0\) passes through the fixed point \(\ldots \ldots .\) (a) \([(1 / 3),-(1 / 4)]\) (b) \([-(1 / 3),(1 / 4)]\) (c) \([(1 / 3),(1 / 4)]\) (d) \([-(1 / 3),-(1 / 4)]\)
One side of the rectangle lies along the line \(4 \mathrm{x}+7 \mathrm{y}+5=0\). Two of its vertices are \((-3,1)\) and \((1,1)\). Then the equations of other side is (a) \(7 x-4 y+25=0\) (b) \(4 x+7 y=11\) (c) \(7 x-4 y-3=0\) (d) All of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.