Chapter 14: Problem 1356
If the lines \(\mathrm{x}=\mathrm{a}+\mathrm{m}, \mathrm{y}=-2\) and \(\mathrm{y}=\mathrm{mx}\) are concurrent, the least value of \(|\mathrm{a}|\) is \(\ldots \ldots .\) (a) 0 (b) \(\sqrt{2}\) (c) \(2 \sqrt{2}\) (d) none
Chapter 14: Problem 1356
If the lines \(\mathrm{x}=\mathrm{a}+\mathrm{m}, \mathrm{y}=-2\) and \(\mathrm{y}=\mathrm{mx}\) are concurrent, the least value of \(|\mathrm{a}|\) is \(\ldots \ldots .\) (a) 0 (b) \(\sqrt{2}\) (c) \(2 \sqrt{2}\) (d) none
All the tools & learning materials you need for study success - in one app.
Get started for freeA variable straight line passes through a fixed point \((a, b)\) intersecting the coordinate axes at \(\mathrm{A}\) and \(\mathrm{B}\). If ' \(\mathrm{O}^{\prime}\) is the origin, then the locus of the centroid of the triangle \(\mathrm{OAB}\) is (a) \(b x+a y=3 x y\) (b) \(\mathrm{bx}+\mathrm{ay}=2 \mathrm{xy}\) (c) \(a x+b y=3 x y\) (d) \(a x+b y=2 x y\)
Three straight lines \(2 \mathrm{x}+11 \mathrm{y}-5=0,4 \mathrm{x}-3 \mathrm{y}-2=0\) and \(24 x+7 y-20=0\) (a) form a triangle (b) are only concurrent (c) are concurrent with one line bisecting the angle between the other two. (d) none of these
A square of side 'a' lies above the \(\mathrm{x}\) -axis and has one vertex at the origin. The side passing through the origin makes an angle o. \([0<\alpha<(\pi / 4)]\) with the positive direction of \(\mathrm{x}\) -axis. The equation of the diagonal not passing through the origin is (a) \(y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a\) (b) \(y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a\) (c) \(y(\cos \alpha-\sin \alpha)-x(\sin \alpha+\cos \alpha)=a\) (d) \(y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a\)
The length of a side of a square OPQR is \(\mathrm{a}, \mathrm{O}\) is the origin OP and \(\mathrm{OR}\) are along positive direction of the \(\mathrm{X}\) and \(\mathrm{Y}\) axes respectively. If \(\mathrm{A}\) and \(\mathrm{B}\) are mid points of \(\underline{\mathrm{PQ}}\) and \(\underline{\mathrm{QR}}\) respectively then measure of angle between \(\underline{\mathrm{OA}}\) and \(\underline{\mathrm{OB}}\) is.... (a) \(\cos ^{-1}(3 / 5)\) (b) \(\tan ^{-1}(4 / 3)\) (c) \(\cot ^{-1}(3 / 4)\) (d) \(\sin ^{-1}(3 / 5)\)
The image of origin in the line \(\mathrm{x}+4 \mathrm{y}=1 \mathrm{is}\) (a) \([(2 / 17),-(8 / 17)]\) (b) \([-(2 / 17),-(8 / 17)]\) (c) \([-(2 / 17),(8 / 17)]\) (d) \([(2 / 17),(8 / 17)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.