Chapter 15: Problem 1366
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
Chapter 15: Problem 1366
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(P\) is a point on an ellipse \(5 x^{2}+4 y^{2}=80\) whose foci are \(S\) and \(\mathrm{S}^{\prime}\). Then \(\mathrm{PS}+\mathrm{PS}^{\prime}=\ldots \ldots \ldots\) (a) \(4 \sqrt{5}\) (b) 4 (c) 8 (d) 10
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
Four distinct points \((1,0),(0,1),(0,0)\) and \((2 \mathrm{a}, 3 \mathrm{a})\) lie on a circle for (a) only one value of \(\mathrm{a} \in(0,1)\) (b) \(\mathrm{a}>2\) (c) \(\mathrm{a}<0\) (d) \(a \in(1,2)\)
Tangents are drawn to the ellipse \(\left(\mathrm{x}^{2} / 9\right)+\left(\mathrm{y}^{2} / 5\right)=1\) at ends of latus recturm line. The area of quadrilateral so formed is \(\ldots \ldots \ldots\) (a) \((27 / 4)\) (b) \((27 / 55)\) (c) 27 (d) \((27 / 2)\)
The equation of circle touching the axis of \(\mathrm{y}\) at a distance \(+4\) from the origin and cutoff an intercept 6 from the axis of \(\mathrm{x}\) is \(\ldots \ldots \ldots\) (a) \(x^{2}+y^{2}-10 x-8 y+16=0\) (b) \(x^{2}+y^{2}+10 x-8 y+16=0\) (c) \(x^{2}+y^{2}-10 x+8 y+16=0\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.