Chapter 15: Problem 1366
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
Chapter 15: Problem 1366
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeArea of the greatest rectangle that can be inscribed in an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is (a) \(a b\) (b) \(2 \mathrm{ab}\) (c) \((\mathrm{a} / \mathrm{b})\) (d) \(\sqrt{(a b)}\)
The area of the triangle formed by any tangent to the hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with its asymptotes is (a) \(a b\) (b) \(4 \mathrm{ab}\) (c) \(a^{2} b^{2}\) (d) \(4 \mathrm{a}^{2} \mathrm{~b}^{2}\)
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
The equation \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}-8 \mathrm{x}-18 \mathrm{y}+35=\mathrm{k}\) represents (a) parabola if \(\mathrm{k}>0\) (b) circle if \(\mathrm{k}>0\) (c) a point if \(\mathrm{k}=0\) (d) a hyperbola if \(\mathrm{k}>0\)
If angle between asymptote of hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) is \(45^{\circ} .\) The value of eccentricity is \(\ldots \ldots\) (a) \(\sqrt{(4 \pm 2 \sqrt{2})}\) (b) \(\sqrt{(4+2 \sqrt{2})}\) (c) \(\sqrt{(4-2 \sqrt{2})}\) (d) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.