Chapter 15: Problem 1383
If one of the diameters of the circle \(x^{2}+y^{2}-2 x-6 y+6=0\) is a chord to the circle with centre \((2,1)\), then the radius of the circle is \(\ldots\) (a) 3 (b) \(\sqrt{3}\) (c) 2 (d) \(\sqrt{2}\)
Chapter 15: Problem 1383
If one of the diameters of the circle \(x^{2}+y^{2}-2 x-6 y+6=0\) is a chord to the circle with centre \((2,1)\), then the radius of the circle is \(\ldots\) (a) 3 (b) \(\sqrt{3}\) (c) 2 (d) \(\sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTangents are drawn to the ellipse \(\left(\mathrm{x}^{2} / 9\right)+\left(\mathrm{y}^{2} / 5\right)=1\) at ends of latus recturm line. The area of quadrilateral so formed is \(\ldots \ldots \ldots\) (a) \((27 / 4)\) (b) \((27 / 55)\) (c) 27 (d) \((27 / 2)\)
If tangents to the parabola \(y^{2}=4 \mathrm{ax}\) at the points (at \(_{1}, 2 \mathrm{at}_{1}\) ) and \(\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right.\) ) intersect on the axis of the parabola, then (a) \(t_{1} t_{2}=-1\) (b) \(\mathrm{t}_{1} \mathrm{t}_{2}=1\) (c) \(\mathrm{t}_{1}=\mathrm{t}_{2}\) (d) \(\mathrm{t}_{1}+\mathrm{t}_{2}=0\)
The eccentricity of an ellipse, with its centre at the origin, is \((1 / 2)\). If one of the directories is \(\mathrm{x}=4\), then equation of an ellipse is (a) \(3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=1\) (b) \(3 x^{2}+4 y^{2}=12\) (c) \(4 x^{2}+3 y^{2}=12\) (d) \(4 x^{2}+3 y^{2}=1\)
The circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}-10 \mathrm{y}+\mathrm{P}=0\) does not touch or intersect the coordinate axes and point \((1,4)\) is inside the circle, then the range of the values of \(P\) is (a) \((0,25)\) (b) \((5,29)\) (c) \((25,29)\) (d) \((9,25)\)
The chord \(\mathrm{AB}\) of the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) cuts the axis of the parabola at \(\mathrm{C}\). If \(\mathrm{A}=\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right), \mathrm{B}=\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)\) and \(\mathrm{AB}: \mathrm{AC}=3: 1\) then (a) \(\mathrm{t}_{2}=2 \mathrm{t}_{1}\) (b) \(\mathrm{t}_{1}+2 \mathrm{t}_{2}=0\) (c) \(t_{2}+2 t_{1}=0\) (d) \(t_{1}-2 t_{2}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.