Chapter 15: Problem 1383
If one of the diameters of the circle \(x^{2}+y^{2}-2 x-6 y+6=0\) is a chord to the circle with centre \((2,1)\), then the radius of the circle is \(\ldots\) (a) 3 (b) \(\sqrt{3}\) (c) 2 (d) \(\sqrt{2}\)
Chapter 15: Problem 1383
If one of the diameters of the circle \(x^{2}+y^{2}-2 x-6 y+6=0\) is a chord to the circle with centre \((2,1)\), then the radius of the circle is \(\ldots\) (a) 3 (b) \(\sqrt{3}\) (c) 2 (d) \(\sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If the line \(\mathrm{lx}+\mathrm{my}+\mathrm{n}=0\) cuts an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) in points whose eccentric angles differ by \((\pi / 2)\), then \(\left[\left(a^{2} \ell^{2}+b^{2} \mathrm{~m}^{2}\right) / \mathrm{n}^{2}\right]=\ldots \ldots .\) (a) 1 (b) \((3 / 2)\) (c) 2 (d) \((5 / 2)\)
The line \((\mathrm{x}+\mathrm{g}) \cos \theta+(\mathrm{y}+\mathrm{f}) \sin \theta=\mathrm{k}\) touches the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{~g} \mathrm{x}+2 \mathrm{fy}+\mathrm{c}=0\) only its (a) \(g^{2}+f^{2}=c+k^{2}\) (b) \(g^{2}+f^{2}=c^{2}+k^{2}\) (c) \(g^{2}+f^{2}=c-k^{2}\) (d) \(g^{2}+f^{2}=c^{2}-k^{2}\)
The centre of the ellipse \(\left[(\mathrm{x}+\mathrm{y}-2)^{2} / 9\right]+\left[(\mathrm{x}-\mathrm{y})^{2} / 16\right]=1\) is \(\ldots\) (a) \((1,1)\) (b) \((0,0)\) (c) \((0,1)\) (d) \((1,0)\)
If \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)
Equation of common tangents of \(\mathrm{y}^{2}=4 \mathrm{bx}\) and \(\mathrm{x}^{2}=4 \mathrm{by}\) is (a) \(\mathrm{x}+\mathrm{y}+\mathrm{b}=0\) (b) \(x-y+b=0\) (c) \(x-y-b=0\) (d) \(x+y-b=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.