Chapter 15: Problem 1385
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
Chapter 15: Problem 1385
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAngle between the tangents drawn to \(\mathrm{y}^{2}=4 \mathrm{x}\), where it is intersected by the line \(\mathrm{x}-\mathrm{y}-1=0\) is equal to (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If \((\mathrm{x} / 2 \mathrm{a})+[(\mathrm{y} \sqrt{3}) / 2 \mathrm{~b}]=1\) touches the ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\), then its eccentric angle \(\theta\) of the contact point is (a) \(0^{\circ}\) (b) \(60^{\circ}\) (c) \(45^{\circ}\) (d) \(90^{\circ}\)
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
Tangent to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=5\) at the point \((1,-2)\) also touches the circle \(x^{2}+y^{2}-8 x+6 y+20=0\) then point of contact is \(\ldots \ldots\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,-1)\) (d) \((-3,1)\)
The latus rectum of a parabola is a line (a) through the focus (b) parallel to the directrix (c) perpendicular to the axis (d) all of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.