Chapter 15: Problem 1385
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
Chapter 15: Problem 1385
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
If S and \(S\) ' are two foci of an ellipse \(16 \mathrm{x}^{2}+25 \mathrm{y}^{2}=400\) and PSQ is a focal chord such that \(\mathrm{SP}=16\) then \(\mathrm{S}^{\prime} \mathrm{Q}=\ldots \ldots .\) (a) \((74 / 9)\) (b) \((54 / 9)\) (c) \((64 / 9)\) (d) \((44 / 9)\)
If \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) and it's one focus is \(\mathrm{S}(\mathrm{ae}, 0)\) then \(\mathrm{PS}\) is equal to \(\ldots \ldots \ldots\) (a) \(a+e x_{1}\) (b) \(a-e x_{1}\) (c) \(\mathrm{ae}+\mathrm{x}_{1}\) (d) \(\mathrm{ae}-\mathrm{x}_{1}\)
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.