Chapter 15: Problem 1386
The length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
Chapter 15: Problem 1386
The length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe axis of the parabola \(9 \mathrm{y}^{2}-16 \mathrm{x}-12 \mathrm{y}-57=0\) is (a) \(\mathrm{y}=0\) (b) \(16 \mathrm{x}+61=0\) (c) \(3 \mathrm{y}-2=0\) (d) \(3 \mathrm{y}-61=0\)
The equation \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}-8 \mathrm{x}-18 \mathrm{y}+35=\mathrm{k}\) represents (a) parabola if \(\mathrm{k}>0\) (b) circle if \(\mathrm{k}>0\) (c) a point if \(\mathrm{k}=0\) (d) a hyperbola if \(\mathrm{k}>0\)
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
The value of \(\mathrm{m}\) for which \(\mathrm{y}=\mathrm{mx}+6\) is a tangent to the hyperbola \(\left(x^{2} / 100\right)-\left(y^{2} / 49\right)=1\) is (a) \(\sqrt{(17 / 20)}\) (b) \(\sqrt{(20 / 3)}\) (c) \(\sqrt{(20 / 17)}\) (d) \(\sqrt{(3 / 20)}\)
If \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.