Chapter 15: Problem 1386
The length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
Chapter 15: Problem 1386
The length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
If \((\mathrm{x} / 2 \mathrm{a})+[(\mathrm{y} \sqrt{3}) / 2 \mathrm{~b}]=1\) touches the ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\), then its eccentric angle \(\theta\) of the contact point is (a) \(0^{\circ}\) (b) \(60^{\circ}\) (c) \(45^{\circ}\) (d) \(90^{\circ}\)
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
The distance from the foci of \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) on the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 25\right)=1\) is \(\ldots \ldots \ldots\) (a) \(4-(5 / 4) \mathrm{y}_{1}\) (b) \(5-(4 / 5) \mathrm{y}_{1}\) (c) \(5-(4 / 5) \mathrm{x}_{1}\) (d) \(4-(4 / 5) \mathrm{y}_{1}\)
The area of the triangle formed by any tangent to the hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with its asymptotes is (a) \(a b\) (b) \(4 \mathrm{ab}\) (c) \(a^{2} b^{2}\) (d) \(4 \mathrm{a}^{2} \mathrm{~b}^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.