Chapter 15: Problem 1387
The straight line \(\mathrm{y}=\mathrm{a}-\mathrm{x}\) touches the parabola \(\mathrm{x}^{2}=\mathrm{x}-\mathrm{y}\) if \(\mathrm{a}=\ldots \ldots \ldots .\) (a) \(-1\) (b) 0 (c) 1 (d) 2
Chapter 15: Problem 1387
The straight line \(\mathrm{y}=\mathrm{a}-\mathrm{x}\) touches the parabola \(\mathrm{x}^{2}=\mathrm{x}-\mathrm{y}\) if \(\mathrm{a}=\ldots \ldots \ldots .\) (a) \(-1\) (b) 0 (c) 1 (d) 2
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the tangents are drawn to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=12\) at the point where it meets the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-5 \mathrm{x}+3 \mathrm{y}-2=0\), then the point of intersection of these tangent is (a) \((6,-6)\) (b) \([6,(18 / 5)]\) (c) \([-6,(18 / 5)]\) (d) \([6,(18 / 5)]\)
Let \(\mathrm{C}\) be the centre of the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-20=0\). If the tangents at the point \(\mathrm{A}(1,7)\) and \(\mathrm{B}(4,-2)\) on the circle meet at point \(\mathrm{D}\). Then area of the quadrilateral \(\mathrm{ABCD}\) is \(\ldots \ldots\) (a) 150 sq. units (b) 100 sq. units (c) 75 sq. units (d) 50 sq. units
A square is inscribed in the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}+4 \mathrm{y}-93=0\) Its sides are parallel to the coordinate axes. Then one vertex of the square is (a) \((1+\sqrt{2},-2)\) (b) \((1-\sqrt{2},-2)\) (c) \((1,-2+\sqrt{2})\) (d) none of these
The locus of a point \(\mathrm{P}(\alpha, \beta)\) moving under the condition that the line \(\mathrm{y}=\alpha \mathrm{x}+\beta\) is a tangent to the hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) is (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
The number of common tangents to the circles \(\mathrm{x}^{2}+\mathrm{y}^{2}=4\) and \(x^{2}+y^{2}-6 x-8 y-24=0\) is \(\ldots \ldots\) (a) 0 (b) 1 (c).2 (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.