Chapter 15: Problem 1388
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
Chapter 15: Problem 1388
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of the triangle formed by any tangent to the hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with its asymptotes is (a) \(a b\) (b) \(4 \mathrm{ab}\) (c) \(a^{2} b^{2}\) (d) \(4 \mathrm{a}^{2} \mathrm{~b}^{2}\)
Let \(E\) be the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 4\right)=1\) and \(C\) be the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\). Let \(\mathrm{P}\) and \(\mathrm{Q}\) be the point \((1,2)\) and \((2,1)\) respe. Then (a) P lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\) (b) P lies inside both \(\mathrm{C}\) and \(\mathrm{E}\) (c) \(Q\) lies outside both \(\mathrm{C}\) and \(\mathrm{E}\) (d) Q lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\)
If the tangents are drawn to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=12\) at the point where it meets the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-5 \mathrm{x}+3 \mathrm{y}-2=0\), then the point of intersection of these tangent is (a) \((6,-6)\) (b) \([6,(18 / 5)]\) (c) \([-6,(18 / 5)]\) (d) \([6,(18 / 5)]\)
If angle between asymptote of hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) is \(45^{\circ} .\) The value of eccentricity is \(\ldots \ldots\) (a) \(\sqrt{(4 \pm 2 \sqrt{2})}\) (b) \(\sqrt{(4+2 \sqrt{2})}\) (c) \(\sqrt{(4-2 \sqrt{2})}\) (d) none of these
Let \(\mathrm{C}\) be the centre of the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-20=0\). If the tangents at the point \(\mathrm{A}(1,7)\) and \(\mathrm{B}(4,-2)\) on the circle meet at point \(\mathrm{D}\). Then area of the quadrilateral \(\mathrm{ABCD}\) is \(\ldots \ldots\) (a) 150 sq. units (b) 100 sq. units (c) 75 sq. units (d) 50 sq. units
What do you think about this solution?
We value your feedback to improve our textbook solutions.