Chapter 15: Problem 1388
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
Chapter 15: Problem 1388
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
All the tools & learning materials you need for study success - in one app.
Get started for freeTangents are drawn to the ellipse \(\left(\mathrm{x}^{2} / 9\right)+\left(\mathrm{y}^{2} / 5\right)=1\) at ends of latus recturm line. The area of quadrilateral so formed is \(\ldots \ldots \ldots\) (a) \((27 / 4)\) (b) \((27 / 55)\) (c) 27 (d) \((27 / 2)\)
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
The shortest distance between the line \(\mathrm{x}-\mathrm{y}+1=0\) and the curve \(\mathrm{x}=\mathrm{y}^{2}\) is \(\ldots \ldots \ldots\) (a) \([(3 \sqrt{2}) / 5]\) (b) \([(2 \sqrt{3}) / 8]\) (c) \([(3 \sqrt{2}) / 8]\) (d) \([(2 \sqrt{2}) / 5]\)
The area bounded by the circles \(\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x}^{2}+\mathrm{y}^{2}=4\) and the pair of lines \(\sqrt{3}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=4 \mathrm{xy}\) is equal to \(\ldots \ldots \ldots\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((5 / 2)\) (d) 3
A circle is given by \(\mathrm{x}^{2}+(\mathrm{y}-1)^{2}=1\), another circle \(\mathrm{C}\) touches it externally and also the \(\mathrm{x}\) -axis, then the locus of its centre is \(\ldots \ldots \ldots\) (a) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}=4 \mathrm{y}\right\\}\\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=0\\}\) (b) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+(\mathrm{y}-1)^{2}=4\right\\}\\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=0\\}\) (c) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}=\mathrm{y}\right\\} \quad\\{(0, \mathrm{y}): \mathrm{y}=0\\}\) (d) \(\left\\{(x, y): x^{2}=4 y\right\\}\\{(0, y): y=0\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.