Chapter 15: Problem 1397
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
Chapter 15: Problem 1397
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf two circle \((\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}=\mathrm{a}^{2}\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}+2 \mathrm{y}+8=0\) intersect in two distinct points, then (a) \(2<\mathrm{a}<8\) (b) \(a>2\) (c) \(\mathrm{a}<2\) (d) \(\mathrm{a}=2\)
If \(\mathrm{AB}\) is a double ordinates of the hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) such that \(\mathrm{OAB}\) is an equilateral triangle, \(O\) being the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies. (a) \(1<\mathrm{e}<(2 / \sqrt{3})\) (b) \(\mathrm{e}<(1 / \sqrt{3})\) (c) \(\mathrm{e}>(\sqrt{3} / 2)\) (d) \(e>(2 / \sqrt{3})\)
The centre of the circle passing through \((0,0)\) and \((1,0)\) and touching the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\) is \(\ldots \ldots\) (a) \([(3 / 2),(1 / 2)]\) (b) \([(1 / 2),(3 / 2)]\) (c) \([(1 / 2),(1 / 2)]\) (d) \([(1 / 2), \pm \sqrt{2}]\)
The line \(\mathrm{y}=\mathrm{c}\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) if \(\mathrm{c}\) is equal to (a) a (b) 0 (c) \(2 \mathrm{a}\) (d) None of these
Let \(\mathrm{P}\) be the point \((1,0)\) and \(\mathrm{Q}\) a point on the locus \(\mathrm{y}^{2}=8 \mathrm{x}\). The locus of mid-point of \(P Q\) is (a) \(\mathrm{y}^{2}+4 \mathrm{x}+2=0\) (b) \(y^{2}-4 x+2=0\) (c) \(x^{2}-4 y+2=0\) (d) \(x^{2}+4 y+2=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.