Chapter 15: Problem 1397
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
Chapter 15: Problem 1397
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe latus rectum of a parabola is a line (a) through the focus (b) parallel to the directrix (c) perpendicular to the axis (d) all of these
The latus rectum of the hyperbola \(9 x^{2}-16 y^{2}-18 x-32 y-151=0\) is (a) \((9 / 2)\) (b) \((3 / 2)\) (c) 9 (d) \((9 / 4)\)
The eccentricity of an ellipse, with its centre at the origin, is \((1 / 2)\). If one of the directories is \(\mathrm{x}=4\), then equation of an ellipse is (a) \(3 \mathrm{x}^{2}+4 \mathrm{y}^{2}=1\) (b) \(3 x^{2}+4 y^{2}=12\) (c) \(4 x^{2}+3 y^{2}=12\) (d) \(4 x^{2}+3 y^{2}=1\)
The distance from the foci of \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) on the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 25\right)=1\) is \(\ldots \ldots \ldots\) (a) \(4-(5 / 4) \mathrm{y}_{1}\) (b) \(5-(4 / 5) \mathrm{y}_{1}\) (c) \(5-(4 / 5) \mathrm{x}_{1}\) (d) \(4-(4 / 5) \mathrm{y}_{1}\)
The length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.