Chapter 15: Problem 1399
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
Chapter 15: Problem 1399
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeChords of an ellipse are drawn through the positive end of the minor axis. Then their midpoint lies on (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
The vertices of the hyperbola \(9 x^{2}-16 y^{2}-36 x+96 y-252=0\) are (a) \((6,3),(-6,3)\) (b) \((-6,3),(-6,-3)\) (c) \((6,-3),(2,-3)\) (d) \((6,3),(-2,3)\)
\(\mathrm{S}\) and \(\mathrm{T}\) are the foci of an ellipse and \(\mathrm{B}\) is an end of the minor axis. If \(\mathrm{STB}\) is an equilateral, then \(\mathrm{e}=\ldots \ldots\) (a) \((1 / 2)\) (b) \((1 / 3)\) (c) \((1 / 4)\) (d) \((1 / 8)\)
If the line \(\mathrm{lx}+\mathrm{my}+\mathrm{n}=0\) cuts an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) in points whose eccentric angles differ by \((\pi / 2)\), then \(\left[\left(a^{2} \ell^{2}+b^{2} \mathrm{~m}^{2}\right) / \mathrm{n}^{2}\right]=\ldots \ldots .\) (a) 1 (b) \((3 / 2)\) (c) 2 (d) \((5 / 2)\)
Two tangents to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=4\) at the points \(\mathrm{A}\) and \(\mathrm{B}\) meet at \(\mathrm{P}(-4,0)\). The area of the quadrilateral \(\mathrm{PAOB}\), where \(\mathrm{O}\) is the origin is (a) \(4 \sqrt{3}\) (b) 4 (c) \(6 \sqrt{2}\) (d) \(2 \sqrt{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.