Chapter 15: Problem 1399
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
Chapter 15: Problem 1399
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
The vertices of the hyperbola \(9 x^{2}-16 y^{2}-36 x+96 y-252=0\) are (a) \((6,3),(-6,3)\) (b) \((-6,3),(-6,-3)\) (c) \((6,-3),(2,-3)\) (d) \((6,3),(-2,3)\)
A tangent to the parabola \(\mathrm{y}^{2}=9 \mathrm{x}\) passes through the point \((4,10)\). Its slope is (a) \((3 / 4)\) (b) \((9 / 4)\) (c) \((1 / 4)\) (d) \((1 / 3)\)
If \(\mathrm{x}+\mathrm{y}+1=0\) touches the parabola \(\mathrm{y}^{2}=\mathrm{ax}\) then \(\mathrm{a}=\ldots \ldots \ldots\) (a) 8 (b) 6 (c) 4 (d) 2
The shortest distance between the line \(\mathrm{x}-\mathrm{y}+1=0\) and the curve \(\mathrm{x}=\mathrm{y}^{2}\) is \(\ldots \ldots \ldots\) (a) \([(3 \sqrt{2}) / 5]\) (b) \([(2 \sqrt{3}) / 8]\) (c) \([(3 \sqrt{2}) / 8]\) (d) \([(2 \sqrt{2}) / 5]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.