Chapter 15: Problem 1401
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
Chapter 15: Problem 1401
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation \(\left[x^{2} /(1-r)\right]-\left[y^{2} /(1+r)\right]=1 ; r>1\) represents. (a) a parabola (b) an ellipse (c) a circle (d) None of these
The line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
If \(\mathrm{e}_{1}\) and \(\mathrm{e}_{2}\) be the eccentricities of a hyperbola and its conjugate, then \(\left(1 / \mathrm{e}_{1}^{2}\right)+\left(1 / \mathrm{e}_{2}^{2}\right)=\ldots \ldots \ldots\) (a) 2 (b) 1 (c) 0 (d) 3
If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
What do you think about this solution?
We value your feedback to improve our textbook solutions.