Chapter 15: Problem 1401
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
Chapter 15: Problem 1401
The vertex of the parabola \((x-b)^{2}=4 b(y-b)\) is ........ (a) (b,0) (b) \((0, b)\) (c) \((0,0)\) (d) \((\mathrm{b}, \mathrm{b})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
The equation \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}-8 \mathrm{x}-18 \mathrm{y}+35=\mathrm{k}\) represents (a) parabola if \(\mathrm{k}>0\) (b) circle if \(\mathrm{k}>0\) (c) a point if \(\mathrm{k}=0\) (d) a hyperbola if \(\mathrm{k}>0\)
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
If one of the diameters of the circle \(x^{2}+y^{2}-2 x-6 y+6=0\) is a chord to the circle with centre \((2,1)\), then the radius of the circle is \(\ldots\) (a) 3 (b) \(\sqrt{3}\) (c) 2 (d) \(\sqrt{2}\)
The equations of the common tangents to the parabola \(y=x^{2}\) and \(y=-(x-2)^{2}\) is (a) \(\mathrm{y}=4(\mathrm{x}-1)\) (b) \(\mathrm{y}=2\) (c) \(\mathrm{y}=-4(\mathrm{x}-1)\) (d) \(\mathrm{y}=-30 \mathrm{x}-50\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.