Chapter 15: Problem 1402
The axis of the parabola \(9 \mathrm{y}^{2}-16 \mathrm{x}-12 \mathrm{y}-57=0\) is (a) \(\mathrm{y}=0\) (b) \(16 \mathrm{x}+61=0\) (c) \(3 \mathrm{y}-2=0\) (d) \(3 \mathrm{y}-61=0\)
Chapter 15: Problem 1402
The axis of the parabola \(9 \mathrm{y}^{2}-16 \mathrm{x}-12 \mathrm{y}-57=0\) is (a) \(\mathrm{y}=0\) (b) \(16 \mathrm{x}+61=0\) (c) \(3 \mathrm{y}-2=0\) (d) \(3 \mathrm{y}-61=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+\mathrm{cy}+\mathrm{a}=0\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{ax}+\mathrm{dy}-1=0\) intersect in two distinct points \(\mathrm{P}\) and \(Q\), then the line \(5 x+\) by \(-a=0\) passes through \(P\) and \(Q\) fore (a) no value of a (b) exactly one value of a (c) exactly two values of a (d) infinitely many value of a
The shortest distance between the line \(\mathrm{x}-\mathrm{y}+1=0\) and the curve \(\mathrm{x}=\mathrm{y}^{2}\) is \(\ldots \ldots \ldots\) (a) \([(3 \sqrt{2}) / 5]\) (b) \([(2 \sqrt{3}) / 8]\) (c) \([(3 \sqrt{2}) / 8]\) (d) \([(2 \sqrt{2}) / 5]\)
Let \(E\) be the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 4\right)=1\) and \(C\) be the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\). Let \(\mathrm{P}\) and \(\mathrm{Q}\) be the point \((1,2)\) and \((2,1)\) respe. Then (a) P lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\) (b) P lies inside both \(\mathrm{C}\) and \(\mathrm{E}\) (c) \(Q\) lies outside both \(\mathrm{C}\) and \(\mathrm{E}\) (d) Q lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\)
The length of the chord joining the points \((2 \cos \theta, 2 \sin \theta)\) and \(\left(2 \cos \left(\theta+60^{\circ}\right), 2 \sin \left(\theta+60^{\circ}\right)\right)\) of the circle \(x^{2}+y^{2}=4\) is (a) 2 (b) 4 (c) 8 (d) 16
One of the diameters of the circle circumscribing the rectangle \(\mathrm{ABCD}\) is \(\mathrm{x}-4 \mathrm{y}+7=0 .\) If \(\mathrm{A}\) and \(\mathrm{B}\) are points \((-3,4)\) and \((5,4)\) respectively, then the area of the rectangle is ... (a) 32 sq. units (b) 16 sq. units (c) 64 sq. units (d) 8 sq. units
What do you think about this solution?
We value your feedback to improve our textbook solutions.