Chapter 15: Problem 1404
The latus rectum of a parabola is a line (a) through the focus (b) parallel to the directrix (c) perpendicular to the axis (d) all of these
Chapter 15: Problem 1404
The latus rectum of a parabola is a line (a) through the focus (b) parallel to the directrix (c) perpendicular to the axis (d) all of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe length of the common chord of the parabolas \(\mathrm{y}^{2}=\mathrm{x}\) and \(\mathrm{x}^{2}=\mathrm{y}\) is (a) 1 (b) \(\sqrt{2}\) (c) \(4 \sqrt{2}\) (d) \(2 \sqrt{2}\)
If \(\sqrt{(3) b x+a y=2 a b \text { touches the ellipse }\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1}\) then eccentric angle \(\theta\) of point of contact \(=\ldots \ldots \ldots\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If \(\mathrm{x}=9\) is the chord of the hyperbola \(\mathrm{x}^{2}-\mathrm{y}^{2}=9\) then the equation of the corresponding pair of tangents at the end points of the chord is ......... (a) \(9 x^{2}-8 y^{2}+18 x-9=0\) (b) \(9 x^{2}-8 y^{2}-18 x+9=0\) (c) \(9 x^{2}-8 y^{2}-18 x-9=0\) (d) \(9 \mathrm{x}^{2}-8 \mathrm{y}^{2}+18 \mathrm{x}+9=0\)
The straight line \(\mathrm{y}=\mathrm{a}-\mathrm{x}\) touches the parabola \(\mathrm{x}^{2}=\mathrm{x}-\mathrm{y}\) if \(\mathrm{a}=\ldots \ldots \ldots .\) (a) \(-1\) (b) 0 (c) 1 (d) 2
The equation of the set of complex number \(z=x+\) iy, So that \(\left|z-z_{1}\right|=5\), where \(z_{1}=1+2 i\) (a) \(x^{2}+y^{2}-2 x-4 y-20=0\) (b) \(x^{2}+y^{2}+2 x-4 y-20=0\) (c) \(x^{2}+y^{2}-2 x+4 y-20=0\) (d) \(x^{2}+y^{2}+2 x+4 y+20=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.