Chapter 15: Problem 1406
The line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
Chapter 15: Problem 1406
The line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeIf angle between asymptote of hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) is \(45^{\circ} .\) The value of eccentricity is \(\ldots \ldots\) (a) \(\sqrt{(4 \pm 2 \sqrt{2})}\) (b) \(\sqrt{(4+2 \sqrt{2})}\) (c) \(\sqrt{(4-2 \sqrt{2})}\) (d) none of these
If \(\sqrt{(3) b x+a y=2 a b \text { touches the ellipse }\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1}\) then eccentric angle \(\theta\) of point of contact \(=\ldots \ldots \ldots\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
The angle between the tangents drawn from the point \((1,4)\) to the parabola \(y^{2}=4 x\) is (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
The length of the chord joining the points \((2 \cos \theta, 2 \sin \theta)\) and \(\left(2 \cos \left(\theta+60^{\circ}\right), 2 \sin \left(\theta+60^{\circ}\right)\right)\) of the circle \(x^{2}+y^{2}=4\) is (a) 2 (b) 4 (c) 8 (d) 16
Equation of common tangents of \(\mathrm{y}^{2}=4 \mathrm{bx}\) and \(\mathrm{x}^{2}=4 \mathrm{by}\) is (a) \(\mathrm{x}+\mathrm{y}+\mathrm{b}=0\) (b) \(x-y+b=0\) (c) \(x-y-b=0\) (d) \(x+y-b=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.