Chapter 15: Problem 1406
The line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
Chapter 15: Problem 1406
The line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for free
If two circle \((\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}=\mathrm{a}^{2}\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}+2 \mathrm{y}+8=0\) intersect in two distinct points, then (a) \(2<\mathrm{a}<8\) (b) \(a>2\) (c) \(\mathrm{a}<2\) (d) \(\mathrm{a}=2\)
The equations to the common tangents to the two hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) and are \(\left(y^{2} / a^{2}\right)-\left(x^{2} / b^{2}\right)=1\) (a) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\) (b) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)}\) (c) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\) (d) \(\mathrm{y}=\pm \mathrm{x} \pm\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\)
Tangent to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=5\) at the point \((1,-2)\) also touches the circle \(x^{2}+y^{2}-8 x+6 y+20=0\) then point of contact is \(\ldots \ldots\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,-1)\) (d) \((-3,1)\)
If \(\mathrm{x}=9\) is the chord of the hyperbola \(\mathrm{x}^{2}-\mathrm{y}^{2}=9\) then the equation of the corresponding pair of tangents at the end points of the chord is ......... (a) \(9 x^{2}-8 y^{2}+18 x-9=0\) (b) \(9 x^{2}-8 y^{2}-18 x+9=0\) (c) \(9 x^{2}-8 y^{2}-18 x-9=0\) (d) \(9 \mathrm{x}^{2}-8 \mathrm{y}^{2}+18 \mathrm{x}+9=0\)
If the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+\mathrm{cy}+\mathrm{a}=0\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{ax}+\mathrm{dy}-1=0\) intersect in two distinct points \(\mathrm{P}\) and \(Q\), then the line \(5 x+\) by \(-a=0\) passes through \(P\) and \(Q\) fore (a) no value of a (b) exactly one value of a (c) exactly two values of a (d) infinitely many value of a
What do you think about this solution?
We value your feedback to improve our textbook solutions.