Chapter 15: Problem 1408
The equation of the chord of parabola \(\mathrm{y}^{2}=8 \mathrm{x}\). Which is bisected at the point \((2,-3)\) is (a) \(3 x+4 y-1=0\) (b) \(4 x+3 y+1=0\) (c) \(3 \mathrm{x}-4 \mathrm{y}+1=0\) (d) \(4 x-3 y-1=0\)
Chapter 15: Problem 1408
The equation of the chord of parabola \(\mathrm{y}^{2}=8 \mathrm{x}\). Which is bisected at the point \((2,-3)\) is (a) \(3 x+4 y-1=0\) (b) \(4 x+3 y+1=0\) (c) \(3 \mathrm{x}-4 \mathrm{y}+1=0\) (d) \(4 x-3 y-1=0\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The value of \(\mathrm{m}\) for which \(\mathrm{y}=\mathrm{mx}+6\) is a tangent to the hyperbola \(\left(x^{2} / 100\right)-\left(y^{2} / 49\right)=1\) is (a) \(\sqrt{(17 / 20)}\) (b) \(\sqrt{(20 / 3)}\) (c) \(\sqrt{(20 / 17)}\) (d) \(\sqrt{(3 / 20)}\)
The radius of the circle passing through the points \((5,2)\), \((5,-2)\) and \((1,2)\) is (a) \(2 \sqrt{5}\) (b) \(3 \sqrt{2}\) (c) \(5 \sqrt{2}\) (d) \(2 \sqrt{2}\)
Let \(P\) be a point on the ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) of eccentricity e. If \(\mathrm{A}, \mathrm{A}^{\prime}\) are the vertices and \(\mathrm{S}, \mathrm{S}^{\prime}\) are the foci of an ellipse, then area of APA' : area of PSS' \(=\ldots \ldots .\) (a) e (b) \(\mathrm{e}^{2}\) (c) \(\mathrm{e}^{3}\) (d) (1/e)
A tangent to the parabola \(\mathrm{y}^{2}=9 \mathrm{x}\) passes through the point \((4,10)\). Its slope is (a) \((3 / 4)\) (b) \((9 / 4)\) (c) \((1 / 4)\) (d) \((1 / 3)\)
\(\mathrm{S}\) and \(\mathrm{T}\) are the foci of an ellipse and \(\mathrm{B}\) is an end of the minor axis. If \(\mathrm{STB}\) is an equilateral, then \(\mathrm{e}=\ldots \ldots\) (a) \((1 / 2)\) (b) \((1 / 3)\) (c) \((1 / 4)\) (d) \((1 / 8)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.