Chapter 15: Problem 1410
If \(y_{1}, y_{2}\) and \(y_{3}\) are the ordinates of the vertices of a triangle inscribed in the parabola \(y^{2}=4 a x\), then its area is (a) \(\left|(1 / 8 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (b) \(\left|(1 / 4 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (c) \(\left|(1 / 2 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (a) \(\left|(1 / a)\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.