Chapter 15: Problem 1411
The centre of the ellipse \(\left[(\mathrm{x}+\mathrm{y}-2)^{2} / 9\right]+\left[(\mathrm{x}-\mathrm{y})^{2} / 16\right]=1\) is \(\ldots\) (a) \((1,1)\) (b) \((0,0)\) (c) \((0,1)\) (d) \((1,0)\)
Chapter 15: Problem 1411
The centre of the ellipse \(\left[(\mathrm{x}+\mathrm{y}-2)^{2} / 9\right]+\left[(\mathrm{x}-\mathrm{y})^{2} / 16\right]=1\) is \(\ldots\) (a) \((1,1)\) (b) \((0,0)\) (c) \((0,1)\) (d) \((1,0)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFour distinct points \((1,0),(0,1),(0,0)\) and \((2 \mathrm{a}, 3 \mathrm{a})\) lie on a circle for (a) only one value of \(\mathrm{a} \in(0,1)\) (b) \(\mathrm{a}>2\) (c) \(\mathrm{a}<0\) (d) \(a \in(1,2)\)
The coordinates of a point on the hyperbola \(\left(x^{2} / 24\right)-\left(y^{2} / 18\right)=1\) which is nearest to the line \(3 x+2 y+1=0\) are (a) \((6,-3)\) (b) \((6,3)\) (c) \((-6,3)\) (d) \((-6,-3)\)
The equation of the set of complex number \(z=x+\) iy, So that \(\left|z-z_{1}\right|=5\), where \(z_{1}=1+2 i\) (a) \(x^{2}+y^{2}-2 x-4 y-20=0\) (b) \(x^{2}+y^{2}+2 x-4 y-20=0\) (c) \(x^{2}+y^{2}-2 x+4 y-20=0\) (d) \(x^{2}+y^{2}+2 x+4 y+20=0\)
Chords of an ellipse are drawn through the positive end of the minor axis. Then their midpoint lies on (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
If \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.