Chapter 15: Problem 1411
The centre of the ellipse \(\left[(\mathrm{x}+\mathrm{y}-2)^{2} / 9\right]+\left[(\mathrm{x}-\mathrm{y})^{2} / 16\right]=1\) is \(\ldots\) (a) \((1,1)\) (b) \((0,0)\) (c) \((0,1)\) (d) \((1,0)\)
Chapter 15: Problem 1411
The centre of the ellipse \(\left[(\mathrm{x}+\mathrm{y}-2)^{2} / 9\right]+\left[(\mathrm{x}-\mathrm{y})^{2} / 16\right]=1\) is \(\ldots\) (a) \((1,1)\) (b) \((0,0)\) (c) \((0,1)\) (d) \((1,0)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeOne of the diameters of the circle circumscribing the rectangle \(\mathrm{ABCD}\) is \(\mathrm{x}-4 \mathrm{y}+7=0 .\) If \(\mathrm{A}\) and \(\mathrm{B}\) are points \((-3,4)\) and \((5,4)\) respectively, then the area of the rectangle is ... (a) 32 sq. units (b) 16 sq. units (c) 64 sq. units (d) 8 sq. units
If the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+\mathrm{cy}+\mathrm{a}=0\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{ax}+\mathrm{dy}-1=0\) intersect in two distinct points \(\mathrm{P}\) and \(Q\), then the line \(5 x+\) by \(-a=0\) passes through \(P\) and \(Q\) fore (a) no value of a (b) exactly one value of a (c) exactly two values of a (d) infinitely many value of a
The line \(\mathrm{y}=\mathrm{c}\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{ax}\) if \(\mathrm{c}\) is equal to (a) a (b) 0 (c) \(2 \mathrm{a}\) (d) None of these
The shortest distance between the line \(\mathrm{x}-\mathrm{y}+1=0\) and the curve \(\mathrm{x}=\mathrm{y}^{2}\) is \(\ldots \ldots \ldots\) (a) \([(3 \sqrt{2}) / 5]\) (b) \([(2 \sqrt{3}) / 8]\) (c) \([(3 \sqrt{2}) / 8]\) (d) \([(2 \sqrt{2}) / 5]\)
The equations to the common tangents to the two hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) and are \(\left(y^{2} / a^{2}\right)-\left(x^{2} / b^{2}\right)=1\) (a) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\) (b) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)}\) (c) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\) (d) \(\mathrm{y}=\pm \mathrm{x} \pm\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.