Chapter 15: Problem 1419
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
Chapter 15: Problem 1419
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe line \(\mathrm{y}=\mathrm{mx}+1\) is a tangent to the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) if \(\mathrm{m}=\ldots \ldots \ldots \ldots\) (a) 4 (b) 3 (c) 2 (d) 1
The value of \(\mathrm{m}\) for which \(\mathrm{y}=\mathrm{mx}+6\) is a tangent to the hyperbola \(\left(x^{2} / 100\right)-\left(y^{2} / 49\right)=1\) is (a) \(\sqrt{(17 / 20)}\) (b) \(\sqrt{(20 / 3)}\) (c) \(\sqrt{(20 / 17)}\) (d) \(\sqrt{(3 / 20)}\)
If \(\mathrm{x}+\mathrm{y}+1=0\) touches the parabola \(\mathrm{y}^{2}=\mathrm{ax}\) then \(\mathrm{a}=\ldots \ldots \ldots\) (a) 8 (b) 6 (c) 4 (d) 2
Two circles \(\mathrm{x}^{2}+\mathrm{y}^{2}=6\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+8=0\) are given. Then the equation of the circle through their points of intersection and the point \((1,1)\) is (a) \(x^{2}+y^{2}-6 x+4=0\) (b) \(x^{2}+y^{2}-3 x+1=0\) (c) \(x^{2}+y^{2}-4 y+2=0\) (d) None of these
Let \(P\) be a point on the ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) of eccentricity e. If \(\mathrm{A}, \mathrm{A}^{\prime}\) are the vertices and \(\mathrm{S}, \mathrm{S}^{\prime}\) are the foci of an ellipse, then area of APA' : area of PSS' \(=\ldots \ldots .\) (a) e (b) \(\mathrm{e}^{2}\) (c) \(\mathrm{e}^{3}\) (d) (1/e)
What do you think about this solution?
We value your feedback to improve our textbook solutions.