Chapter 15: Problem 1419
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
Chapter 15: Problem 1419
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of the tangent to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-4 \mathrm{y}+4=0\). Which makes equal intercepts on the positive coordinate axes is ......... (a) \(x+y=8\) (b) \(x+y=4\) (c) \(x+y=2 \sqrt{2}\) (d) \(\mathrm{x}+\mathrm{y}=2\)
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
Two tangents to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=4\) at the points \(\mathrm{A}\) and \(\mathrm{B}\) meet at \(\mathrm{P}(-4,0)\). The area of the quadrilateral \(\mathrm{PAOB}\), where \(\mathrm{O}\) is the origin is (a) \(4 \sqrt{3}\) (b) 4 (c) \(6 \sqrt{2}\) (d) \(2 \sqrt{3}\)
If the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+\mathrm{cy}+\mathrm{a}=0\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{ax}+\mathrm{dy}-1=0\) intersect in two distinct points \(\mathrm{P}\) and \(Q\), then the line \(5 x+\) by \(-a=0\) passes through \(P\) and \(Q\) fore (a) no value of a (b) exactly one value of a (c) exactly two values of a (d) infinitely many value of a
The distance from the foci of \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) on the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 25\right)=1\) is \(\ldots \ldots \ldots\) (a) \(4-(5 / 4) \mathrm{y}_{1}\) (b) \(5-(4 / 5) \mathrm{y}_{1}\) (c) \(5-(4 / 5) \mathrm{x}_{1}\) (d) \(4-(4 / 5) \mathrm{y}_{1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.