If \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)

Short Answer

Expert verified
The short answer to the question based on the step-by-step solution is: The area of $\mathrm{SPS}^{\prime}$ is be\(\sqrt{a^2 - m^2}\).

Step by step solution

01

Find coordinates of S and S'

Since the ellipse has its foci S and S' on the x-axis, the coordinates will be of the form S(-ae, 0) and S'(ae, 0), where a is the semi-major axis, and e is the eccentricity.
02

Determine the lengths of SP and S'P

Using the distance formula, we can find the lengths of SP and S'P: SP = \(\sqrt{(m + ae)^2 + n^2}\) S'P = \(\sqrt{(m - ae)^2 + n^2}\)
03

Apply the properties of ellipses

For any point P on the ellipse, the sum of the distances from P to the foci S and S' is constant and equal to 2a: SP + S'P = 2a Substitute SP and S'P with the expressions from the previous step \(\sqrt{(m + ae)^2 + n^2} + \sqrt{(m - ae)^2 + n^2} = 2a\)
04

Find the area of triangle SPS'

Using the half-base times height formula for the area of the triangle, we get: Area = (1/2) * SP * S'P * sin(∠SPS') Since the coordinates of S, S', and P have been found, it's possible to find the sin(∠SPS'). Let ∠SPM=x and ∠S'PM=y, then sin(∠SPS')=sin(x+y), sin(x+y)=sin(x)cos(y)+cos(x)sin(y) From the cosine law we have: \(\cos(x)=\frac{\left(m+ae\right)^2+n^{2}-m^{2}-n^{2}}{2*SP*ae}\) \(\cos(y)=\frac{\left(m-ae\right)^2+n^{2}-m^{2}-n^{2}}{2*S'P*ae}\) \(\sin(x)=\frac{n}{SP}\) \(\sin(y)=\frac{n}{S'P}\) Substitute these values into the equation of sin(∠SPS') sin(∠SPS')= \(\frac{n}{SP}* \frac{\left(m-ae\right)^2+n^{2}-m^{2}-n^{2}}{2*S'P*ae} + \frac{n}{S'P}* \frac{\left(m+ae\right)^2+n^{2}-m^{2}-n^{2}}{2*SP*ae} \) Area = \(\frac{1}{2} * SP * S'P * \left(\frac{n}{SP} * \frac{\left(m-ae\right)^2+n^{2}-m^{2}-n^{2}}{2*S'P*ae} + \frac{n}{S'P}*\frac{\left(m+ae\right)^2+n^{2}-m^{2}-n^{2}}{2*SP*ae}\right)\) Simplify the equation: Area = \(\frac{n}{4ae}*(\left(m-ae\right)^2+\left(m+ae\right)^2-2*(m^2+n^2))\)
05

Checking the given options

Simplify the above equation and compare it with the given options: Area = \(\frac{n}{4ae}*(2a^2e^2)\) Area = be\(\sqrt{a^2 - m^2}\) Hence, the correct option is (d): be \(\sqrt{a^2 - m^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The lines \(2 \mathrm{x}-3 \mathrm{y}-5=0\) and \(3 \mathrm{x}-4 \mathrm{y}-7=0\) are diameters of a circle of area 154 square units then the equation of the circle is (a) \(x^{2}+y^{2}+2 x-2 y-62=0\) (b) \(x^{2}+y^{2}+2 x-2 y-47=0\) (c) \(x^{2}+y^{2}-2 x+2 y-47=0\) (d) \(x^{2}+y^{2}-2 x+2 y-62=0\)

The distance from the foci of \(\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) on the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 25\right)=1\) is \(\ldots \ldots \ldots\) (a) \(4-(5 / 4) \mathrm{y}_{1}\) (b) \(5-(4 / 5) \mathrm{y}_{1}\) (c) \(5-(4 / 5) \mathrm{x}_{1}\) (d) \(4-(4 / 5) \mathrm{y}_{1}\)

Tangent to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=5\) at the point \((1,-2)\) also touches the circle \(x^{2}+y^{2}-8 x+6 y+20=0\) then point of contact is \(\ldots \ldots\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,-1)\) (d) \((-3,1)\)

If the tangents are drawn to the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=12\) at the point where it meets the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}-5 \mathrm{x}+3 \mathrm{y}-2=0\), then the point of intersection of these tangent is (a) \((6,-6)\) (b) \([6,(18 / 5)]\) (c) \([-6,(18 / 5)]\) (d) \([6,(18 / 5)]\)

If \(y_{1}, y_{2}\) and \(y_{3}\) are the ordinates of the vertices of a triangle inscribed in the parabola \(y^{2}=4 a x\), then its area is (a) \(\left|(1 / 8 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (b) \(\left|(1 / 4 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (c) \(\left|(1 / 2 \mathrm{a})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|\) (a) \(\left|(1 / a)\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free