Chapter 15: Problem 1424
If \(P\) is a point on an ellipse \(5 x^{2}+4 y^{2}=80\) whose foci are \(S\) and \(\mathrm{S}^{\prime}\). Then \(\mathrm{PS}+\mathrm{PS}^{\prime}=\ldots \ldots \ldots\) (a) \(4 \sqrt{5}\) (b) 4 (c) 8 (d) 10
Chapter 15: Problem 1424
If \(P\) is a point on an ellipse \(5 x^{2}+4 y^{2}=80\) whose foci are \(S\) and \(\mathrm{S}^{\prime}\). Then \(\mathrm{PS}+\mathrm{PS}^{\prime}=\ldots \ldots \ldots\) (a) \(4 \sqrt{5}\) (b) 4 (c) 8 (d) 10
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of the chord of parabola \(\mathrm{y}^{2}=8 \mathrm{x}\). Which is bisected at the point \((2,-3)\) is (a) \(3 x+4 y-1=0\) (b) \(4 x+3 y+1=0\) (c) \(3 \mathrm{x}-4 \mathrm{y}+1=0\) (d) \(4 x-3 y-1=0\)
If two circle \((\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}=\mathrm{a}^{2}\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}+2 \mathrm{y}+8=0\) intersect in two distinct points, then (a) \(2<\mathrm{a}<8\) (b) \(a>2\) (c) \(\mathrm{a}<2\) (d) \(\mathrm{a}=2\)
The latus rectum of a parabola is a line (a) through the focus (b) parallel to the directrix (c) perpendicular to the axis (d) all of these
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
A circle is given by \(\mathrm{x}^{2}+(\mathrm{y}-1)^{2}=1\), another circle \(\mathrm{C}\) touches it externally and also the \(\mathrm{x}\) -axis, then the locus of its centre is \(\ldots \ldots \ldots\) (a) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}=4 \mathrm{y}\right\\}\\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=0\\}\) (b) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+(\mathrm{y}-1)^{2}=4\right\\}\\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=0\\}\) (c) \(\left\\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}=\mathrm{y}\right\\} \quad\\{(0, \mathrm{y}): \mathrm{y}=0\\}\) (d) \(\left\\{(x, y): x^{2}=4 y\right\\}\\{(0, y): y=0\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.