Chapter 15: Problem 1424
If \(P\) is a point on an ellipse \(5 x^{2}+4 y^{2}=80\) whose foci are \(S\) and \(\mathrm{S}^{\prime}\). Then \(\mathrm{PS}+\mathrm{PS}^{\prime}=\ldots \ldots \ldots\) (a) \(4 \sqrt{5}\) (b) 4 (c) 8 (d) 10
Chapter 15: Problem 1424
If \(P\) is a point on an ellipse \(5 x^{2}+4 y^{2}=80\) whose foci are \(S\) and \(\mathrm{S}^{\prime}\). Then \(\mathrm{PS}+\mathrm{PS}^{\prime}=\ldots \ldots \ldots\) (a) \(4 \sqrt{5}\) (b) 4 (c) 8 (d) 10
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area bounded by the circles \(\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x}^{2}+\mathrm{y}^{2}=4\) and the pair of lines \(\sqrt{3}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=4 \mathrm{xy}\) is equal to \(\ldots \ldots \ldots\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((5 / 2)\) (d) 3
The vertices of the hyperbola \(9 x^{2}-16 y^{2}-36 x+96 y-252=0\) are (a) \((6,3),(-6,3)\) (b) \((-6,3),(-6,-3)\) (c) \((6,-3),(2,-3)\) (d) \((6,3),(-2,3)\)
The equation of the chord of parabola \(\mathrm{y}^{2}=8 \mathrm{x}\). Which is bisected at the point \((2,-3)\) is (a) \(3 x+4 y-1=0\) (b) \(4 x+3 y+1=0\) (c) \(3 \mathrm{x}-4 \mathrm{y}+1=0\) (d) \(4 x-3 y-1=0\)
If \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) is an ellipse, then length of it's latus-rectum is ....... (a) \(\left(2 b^{2} / a\right)\) (b) \(\left(2 a^{2} / b\right)\) (c) depends on whether \(\mathrm{a}>\mathrm{b}\) or \(\mathrm{b}>\mathrm{a}\) (d) \(\left(2 \mathrm{a} / \mathrm{b}^{2}\right)\)
If the line \(\mathrm{x}-1=0\) is the directrix of the parabola \(\mathrm{y}^{2}-\mathrm{kx}+8=0\) then one of the values of \(\mathrm{k}\) is (a) 4 (b) \((1 / 8)\) (c) \((1 / 4)\) (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.