Chapter 15: Problem 1426
The curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
Chapter 15: Problem 1426
The curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
All the tools & learning materials you need for study success - in one app.
Get started for free
If two circle \((\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}=\mathrm{a}^{2}\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}+2 \mathrm{y}+8=0\) intersect in two distinct points, then (a) \(2<\mathrm{a}<8\) (b) \(a>2\) (c) \(\mathrm{a}<2\) (d) \(\mathrm{a}=2\)
The equation of the tangent to the curve \(4 \mathrm{x}^{2}-9 \mathrm{y}^{2}=1\). Which is parallel to \(5 \mathrm{x}-4 \mathrm{y}+7=0\) is (a) \(30 \mathrm{x}-24 \mathrm{y}+17=0\) (b) \(24 \mathrm{x}-30 \mathrm{y} \pm \sqrt{(161)}=0\) (c) \(30 \mathrm{x}-24 \mathrm{y} \pm \sqrt{(161)}=0\) (d) \(24 \mathrm{x}+30 \mathrm{y} \pm \sqrt{(161)}=0\)
The locus of a point \(\mathrm{P}(\alpha, \beta)\) moving under the condition that the line \(\mathrm{y}=\alpha \mathrm{x}+\beta\) is a tangent to the hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) is (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
The equation \(2 \mathrm{x}^{2}+3 \mathrm{y}^{2}-8 \mathrm{x}-18 \mathrm{y}+35=\mathrm{k}\) represents (a) parabola if \(\mathrm{k}>0\) (b) circle if \(\mathrm{k}>0\) (c) a point if \(\mathrm{k}=0\) (d) a hyperbola if \(\mathrm{k}>0\)
The point of intersection of the tangents at the ends of the latus rectum of the parabola \(\mathrm{y}^{2}=4 \mathrm{x}\) is ....... (a) \((-1,0)\) (b) \((1,0)\) (c) \((0,0)\) (d) \((0,1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.