Chapter 15: Problem 1426
The curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
Chapter 15: Problem 1426
The curve represented by \(\mathrm{x}=3(\cos \mathrm{t}+\sin \mathrm{t})\); \(\mathrm{y}=4(\cos \mathrm{t}-\sin \mathrm{t})\) is (a) circle (b) parabola (c) ellipse (d) hyperbola
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)
If \(\mathrm{AB}\) is a double ordinates of the hyperbola \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) such that \(\mathrm{OAB}\) is an equilateral triangle, \(O\) being the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies. (a) \(1<\mathrm{e}<(2 / \sqrt{3})\) (b) \(\mathrm{e}<(1 / \sqrt{3})\) (c) \(\mathrm{e}>(\sqrt{3} / 2)\) (d) \(e>(2 / \sqrt{3})\)
The triangle \(P Q R\) is inscribed in the circle \(x^{2}+y^{2}=25 .\) If \(Q\) and \(R\) have coordinates \((3,4)\) and \((-4,3)\) respectively, then \(\angle Q P R\) is equal to (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
The equation of the common tangent to the curves \(\mathrm{y}^{2}=8 \mathrm{x}\) and \(\mathrm{xy}=-1\) is (a) \(9 x-3 y+2=0\) (b) \(2 \mathrm{x}-\mathrm{y}+1=0\) (c) \(x-2 y+8=0\) (d) \(x-y+2=0\)
If the line \(\mathrm{y}=1-\mathrm{x}\) touches the curve \(\mathrm{y}^{2}-\mathrm{y}+\mathrm{x}=0\), then the point of contact is (a) \((0,1)\) (b) \((1,0)\) (c) \((1,1)\) (d) \([(1 / 2),(1 / 2)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.