Chapter 15: Problem 1430
Area of the greatest rectangle that can be inscribed in an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is (a) \(a b\) (b) \(2 \mathrm{ab}\) (c) \((\mathrm{a} / \mathrm{b})\) (d) \(\sqrt{(a b)}\)
Chapter 15: Problem 1430
Area of the greatest rectangle that can be inscribed in an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is (a) \(a b\) (b) \(2 \mathrm{ab}\) (c) \((\mathrm{a} / \mathrm{b})\) (d) \(\sqrt{(a b)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeOne of the diameters of the circle circumscribing the rectangle \(\mathrm{ABCD}\) is \(\mathrm{x}-4 \mathrm{y}+7=0 .\) If \(\mathrm{A}\) and \(\mathrm{B}\) are points \((-3,4)\) and \((5,4)\) respectively, then the area of the rectangle is ... (a) 32 sq. units (b) 16 sq. units (c) 64 sq. units (d) 8 sq. units
The equation of circle touching the axis of \(\mathrm{y}\) at a distance \(+4\) from the origin and cutoff an intercept 6 from the axis of \(\mathrm{x}\) is \(\ldots \ldots \ldots\) (a) \(x^{2}+y^{2}-10 x-8 y+16=0\) (b) \(x^{2}+y^{2}+10 x-8 y+16=0\) (c) \(x^{2}+y^{2}-10 x+8 y+16=0\) (d) none of these
The value of \(\mathrm{m}\) for which \(\mathrm{y}=\mathrm{mx}+6\) is a tangent to the hyperbola \(\left(x^{2} / 100\right)-\left(y^{2} / 49\right)=1\) is (a) \(\sqrt{(17 / 20)}\) (b) \(\sqrt{(20 / 3)}\) (c) \(\sqrt{(20 / 17)}\) (d) \(\sqrt{(3 / 20)}\)
The equation of the chord of parabola \(\mathrm{y}^{2}=8 \mathrm{x}\). Which is bisected at the point \((2,-3)\) is (a) \(3 x+4 y-1=0\) (b) \(4 x+3 y+1=0\) (c) \(3 \mathrm{x}-4 \mathrm{y}+1=0\) (d) \(4 x-3 y-1=0\)
The length of the chord joining the points \((2 \cos \theta, 2 \sin \theta)\) and \(\left(2 \cos \left(\theta+60^{\circ}\right), 2 \sin \left(\theta+60^{\circ}\right)\right)\) of the circle \(x^{2}+y^{2}=4\) is (a) 2 (b) 4 (c) 8 (d) 16
What do you think about this solution?
We value your feedback to improve our textbook solutions.