Chapter 15: Problem 1430
Area of the greatest rectangle that can be inscribed in an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is (a) \(a b\) (b) \(2 \mathrm{ab}\) (c) \((\mathrm{a} / \mathrm{b})\) (d) \(\sqrt{(a b)}\)
Chapter 15: Problem 1430
Area of the greatest rectangle that can be inscribed in an ellipse \(\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1\) is (a) \(a b\) (b) \(2 \mathrm{ab}\) (c) \((\mathrm{a} / \mathrm{b})\) (d) \(\sqrt{(a b)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) is an ellipse, then length of it's latus-rectum is ....... (a) \(\left(2 b^{2} / a\right)\) (b) \(\left(2 a^{2} / b\right)\) (c) depends on whether \(\mathrm{a}>\mathrm{b}\) or \(\mathrm{b}>\mathrm{a}\) (d) \(\left(2 \mathrm{a} / \mathrm{b}^{2}\right)\)
The line \(\mathrm{x} \sin \theta-\mathrm{y} \cos \theta=\mathrm{k}\) touches the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{k}^{2}\) then \(\theta=\ldots \ldots\) (a) \(\theta \in[\\{(-1) / 2\\},(1 / 2)]\) (b) \(\theta \in[0,1]\) (c) \(\theta[-1,1]\) (d) \(\theta\) is any angle
The focus of the parabola \(\mathrm{x}^{2}-8 \mathrm{x}+2 \mathrm{y}+7=0\) is \(\ldots \ldots \ldots\) (a) \([4,(9 / 2)]\) (b) \([0,(1 / 2)]\) (c) \([4,(9 / 2)]\) (d) \((4,4)\)
Angle between the tangents drawn to \(\mathrm{y}^{2}=4 \mathrm{x}\), where it is intersected by the line \(\mathrm{x}-\mathrm{y}-1=0\) is equal to (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
The equation of the set of complex number \(z=x+\) iy, So that \(\left|z-z_{1}\right|=5\), where \(z_{1}=1+2 i\) (a) \(x^{2}+y^{2}-2 x-4 y-20=0\) (b) \(x^{2}+y^{2}+2 x-4 y-20=0\) (c) \(x^{2}+y^{2}-2 x+4 y-20=0\) (d) \(x^{2}+y^{2}+2 x+4 y+20=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.