Chapter 15: Problem 1451
\(\quad\) If \(a>2 b>0\) and \(y=m x-b \sqrt{\left(1-m^{2}\right)(m>0)}\) is a tangent to circles \(x^{2}+y^{2}=b^{2}\) and \((x-a)^{2}+y^{2}=b^{2}\) then \(m=\ldots \ldots\) (a) \(\left[2 b / \sqrt{ \left.\left(a^{2}+4 b^{2}\right)\right]}\right.\) (b) \([2 b /(a-2 b)]\) (c) \([b /(a+2 b)]\) (d) \(\left[\sqrt{ \left.\left(a^{2}-4 b^{2}\right) / 2 b\right]}\right.\)