Chapter 15: Problem 1460
If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
Chapter 15: Problem 1460
If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
All the tools & learning materials you need for study success - in one app.
Get started for freeThe axis of the parabola \(9 \mathrm{y}^{2}-16 \mathrm{x}-12 \mathrm{y}-57=0\) is (a) \(\mathrm{y}=0\) (b) \(16 \mathrm{x}+61=0\) (c) \(3 \mathrm{y}-2=0\) (d) \(3 \mathrm{y}-61=0\)
The equation \(\left[x^{2} /(1-r)\right]-\left[y^{2} /(1+r)\right]=1 ; r>1\) represents. (a) a parabola (b) an ellipse (c) a circle (d) None of these
A focus of an ellipse is at the origin. The directrix is the line \(\mathrm{x}-4=0\) and eccentricity is \((1 / 2)\), then the length of semi-major axis is (a) \((5 / 3)\) (b) \((4 / 3)\) (c) \((8 / 3)\) (d) \((2 / 3)\)
The line \(\mathrm{x} \sin \theta-\mathrm{y} \cos \theta=\mathrm{k}\) touches the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{k}^{2}\) then \(\theta=\ldots \ldots\) (a) \(\theta \in[\\{(-1) / 2\\},(1 / 2)]\) (b) \(\theta \in[0,1]\) (c) \(\theta[-1,1]\) (d) \(\theta\) is any angle
Chords of an ellipse are drawn through the positive end of the minor axis. Then their midpoint lies on (a) a circle (b) a parabola (c) an ellipse (d) a hyperbola
What do you think about this solution?
We value your feedback to improve our textbook solutions.