Chapter 15: Problem 1460
If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
Chapter 15: Problem 1460
If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, of the midpoint of PN is (a) A circle (b) a hyperbola (c) a parabola (d) An ellipse
All the tools & learning materials you need for study success - in one app.
Get started for freeThe lines \(2 \mathrm{x}-3 \mathrm{y}-5=0\) and \(3 \mathrm{x}-4 \mathrm{y}-7=0\) are diameters of a circle of area 154 square units then the equation of the circle is (a) \(x^{2}+y^{2}+2 x-2 y-62=0\) (b) \(x^{2}+y^{2}+2 x-2 y-47=0\) (c) \(x^{2}+y^{2}-2 x+2 y-47=0\) (d) \(x^{2}+y^{2}-2 x+2 y-62=0\)
The length of the common chord of the ellipse \(\left[(x-1)^{2} / 9\right]+\left[(y-2)^{2} / 4\right]=1\) and the circle \((x-1)^{2}+(y-2)^{2}=1\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) 4 (d) None of these
The triangle \(P Q R\) is inscribed in the circle \(x^{2}+y^{2}=25 .\) If \(Q\) and \(R\) have coordinates \((3,4)\) and \((-4,3)\) respectively, then \(\angle Q P R\) is equal to (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If two circle \((\mathrm{x}-1)^{2}+(\mathrm{y}-3)^{2}=\mathrm{a}^{2}\) and \(\mathrm{x}^{2}+\mathrm{y}^{2}-8 \mathrm{x}+2 \mathrm{y}+8=0\) intersect in two distinct points, then (a) \(2<\mathrm{a}<8\) (b) \(a>2\) (c) \(\mathrm{a}<2\) (d) \(\mathrm{a}=2\)
Let \(E\) be the ellipse \(\left(x^{2} / 9\right)+\left(y^{2} / 4\right)=1\) and \(C\) be the circle \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\). Let \(\mathrm{P}\) and \(\mathrm{Q}\) be the point \((1,2)\) and \((2,1)\) respe. Then (a) P lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\) (b) P lies inside both \(\mathrm{C}\) and \(\mathrm{E}\) (c) \(Q\) lies outside both \(\mathrm{C}\) and \(\mathrm{E}\) (d) Q lies inside \(\mathrm{C}\) but outside \(\mathrm{E}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.