Chapter 16: Problem 1469
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
Chapter 16: Problem 1469
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
All the tools & learning materials you need for study success - in one app.
Get started for freeIf angle between two units vectors \(\underline{a}\) and \(\underline{b}\) is \(\theta\), then \(\sin (\theta / 2)=\) (A) \(|\underline{a}+\underline{b}|\) (B) \((1 / 2)|\underline{a}-\underline{b}|\) (C) \(|\underline{a}-\underline{b}|\) (D) \((1 / 2)|\underline{a}+\underline{b}|\)
The locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
The equation of plane which is passing through \((2,1,3)\) and having equal \(X\) and Y-intercept and \(Z\) -intercept 14 is (A) \(11 \mathrm{x}-11 \mathrm{y}+3 \mathrm{z}=42\) (B) \(11 \mathrm{x}+11 \mathrm{y}+3 z=42\) (C) \(11 \mathrm{x}+11 \mathrm{y}-3 \mathrm{z}=42\) (D) \(11 \mathrm{x}+11 \mathrm{y}+3 \mathrm{z}+42=0\)
If plane \(2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=-3\) express in form of \(x \cos \alpha+y \cos \beta+z \cos \gamma=p\), then perpendicular distance from origin to the plane is foot of perpendicular is and direction cosine is (A) \(1,[-(2 / 3),(2 / 3),-\overline{(1 / 3)}],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (B) \(2,[-(2 / 3),(2 / 3),-(1 / 3)],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (C) \(1,[(2 / 3),(2 / 3),-(1 / 3)],(2 / 3),(2 / 3),(1 / 3)\) (D) None of these
The equation of plane passing through the point \(\mathrm{A}(1,2,3)\), \(\mathrm{B}(3,-1,2)\) also perpendicular to \(\mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=7\) is (A) \(3 x+5 y-9 z+14=0\) (B) \(3 x-5 y-9 z+14=0\) (C) \(3 x-5 y+9 z+14=0\) (D) \(3 x+5 y+9 z+14=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.