Chapter 16: Problem 1469
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
Chapter 16: Problem 1469
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
All the tools & learning materials you need for study success - in one app.
Get started for free
If unit vector \(\underline{a}\) and \(\underline{b}\) form an angle of \((\pi / 6)\) and \((2 \pi / 3)\) with positive direction of \(\mathrm{x}\) -axis respectively, then \(|\underline{\mathrm{a}}+\underline{\mathrm{b}}|=\) (A) \(\sqrt{(2 / 3)}\) (B) 2 (C) \(\sqrt{2}\) (D) \(\sqrt{3}\)
If any vector forms angles \((\pi / 4),(\pi / 3)\) and \((\pi / 6)\) with axis, then such vector with measure 4 unit is (A) \((2,2 \sqrt{3}, 2 \sqrt{2})\) (B) \(\overline{(-2},-2 \sqrt{3}, 2 \sqrt{2})\) (C) \((2,2 \sqrt{3},-2 \sqrt{2})\) (D) \((-2,-2 \sqrt{3},-2 \sqrt{2})\)
If angle between two unit vectors \(\underline{a} \& \underline{b}\) is \(\alpha\), then \(|\underline{\mathrm{a}}-\underline{\mathrm{b}} \cos \alpha|=0<\alpha<(\pi / 2)\) (A) \(\sin \alpha\) (B) \(\sin (\alpha / 2)\) (C) \(\sin 2 \alpha\) (D) \(\sin ^{2}(\alpha / 2)\)
Equation of line passes through \(\mathrm{A}(-2,4,7)\) and direction \((5,-9,12)\) is (A) \(x=-2+\overline{k 5, y}=4-9 k, z=7-12 k, k \in R\) (B) \(\mathrm{x}=-2+\mathrm{k} 5, \mathrm{y}=4-9 \mathrm{k}, \mathrm{z}=7+12 \mathrm{k}, \mathrm{k} \in \mathrm{R}\) (C) \(x=2+5 k, y=4-9 k, z=7+12 k, k \in R\) (D) None of these
Line \([\\{\sqrt{(2) x-3 \sqrt{2}\\} / 1]}=[\\{2 \sqrt{2}-\sqrt{(2) \mathrm{y}\\} / 2], \mathrm{z}+1}=0\) direction cosine (A) \((1 / \sqrt{5}),-(2 \overline{/ \sqrt{5}}), 0\) (B) \(-(1 / \sqrt{5}),(1 / \sqrt{5}), 0\) (C) \((1 / \sqrt{5}), 0,(1 / \sqrt{5})\) (D) \((1 / \sqrt{5}),-(1 / \sqrt{5}), 0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.