Chapter 16: Problem 1473
\(\mathrm{A}(0,-1,4), \mathrm{B}(1,2,3), \mathrm{C}(5,4,-1)\), then the foot of perpendicular from \(\mathrm{A}\) on \(\underline{\mathrm{BC}}\) is (A) \((-3,3,1)\) (B) \((3,-3,1)\) (C) \((3,3,1)\) (D) \((3,3,-1)\)
Chapter 16: Problem 1473
\(\mathrm{A}(0,-1,4), \mathrm{B}(1,2,3), \mathrm{C}(5,4,-1)\), then the foot of perpendicular from \(\mathrm{A}\) on \(\underline{\mathrm{BC}}\) is (A) \((-3,3,1)\) (B) \((3,-3,1)\) (C) \((3,3,1)\) (D) \((3,3,-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of plane which is perpendicular to the planes \(3 \mathrm{x}+\mathrm{y}+\mathrm{z}=0\) and \(\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=5\) and passing through \((1,3,5)\) is (A) \(x+2 y \bar{z}=0\) (B) \(x-2 y-z=0\) (C) \(x-2 y+z=0\) (D) \(x+2 y-z=0\)
The unit vector which is perpendicular to the vector \((2,4,-3)\) and which is in \(\mathrm{YZ}\) plane is (A) \(\pm[0,(5 / 3), 4]\) (B) \(\pm(1 / 5)(0,3,4)\) (C) \((1 / 5)(0,3,4)\) (D) \((1 / 5)(0,-3,-4)\)
If perpendicular distance between two planes \(3 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=1\) and \(6 \mathrm{x}-4 \mathrm{y}+2 \mathrm{z}=\mathrm{k}\) is \([3 /\\{2 \sqrt{(14)\\}]}\) then \(\mathrm{k}=\) (A) \(5,-1\) (B) \(-5,1\) (C) \(-5,-1\) (D) \(5,-1\)
If \(\mathrm{m} \angle \mathrm{B}=(\pi / 2)\) in \(\Delta \mathrm{ABC}\) and \(\mathrm{P}, \mathrm{Q}\) are points of trisection of hypotenuse \(\underline{\mathrm{A}} \mathrm{C}\), then \(\mathrm{BP}^{2}+\mathrm{BQ}^{2}=\) (A) \((5 / 9) \mathrm{AC}^{2}\) (B) \((5 / 9) \mathrm{AC}\) (C) \((25 / 81) \mathrm{AC}^{2}\) (D) \((25 / 81) \mathrm{AC}\)
If \(\alpha, \beta, \gamma\) are direction cosines of \(\underline{x}\), then \(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=\) (A) 1 (B) 2 (C) \(-1\) (D) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.