Chapter 16: Problem 1488
If three vertices of rhombus are \((6,0,1)(8,-3,7)\) \((2,-5,10)\), then forth vertices \(=\) (A) \((0,-2,-4)\) (B) \((0,-2,4)\) (C) \((0,2,4)\) (D) \((0,2,-4)\)
Chapter 16: Problem 1488
If three vertices of rhombus are \((6,0,1)(8,-3,7)\) \((2,-5,10)\), then forth vertices \(=\) (A) \((0,-2,-4)\) (B) \((0,-2,4)\) (C) \((0,2,4)\) (D) \((0,2,-4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDirection cosine of line \([(4-x) / 7]=[(y+9) / 5]=[(3 z+8) / 2]\) is (A) \(-[21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (B) \([21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (C) \([21 / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (D) \([(-21) / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[(-2) / \sqrt{(670)}]\)
If the direction co-side between two lines are \((3,4,-6)\) and \((9,2,1)\). Then angle between two line is (A) \(\cos ^{-1}[20 /(5246)]\) (B) \(\overline{\cos ^{-1}}[\sqrt{(29) / \sqrt{(5246})]}\) (C) \(\cos ^{-1}[29 / \sqrt{(5246)}]\) (D) \(\cos ^{-1}[\sqrt{(29)} /(5246)]\)
If the position vector of \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) in \(\mathrm{R}^{3}\) are \((-1,2,0),(1,2,3)\) and \((4,2,1)\) then type of \(\triangle \mathrm{ABC}\) is (A) Right angled (B) Isosceles right angled (C) Euilateral (D) Isosceles
Line \(\underline{r}=(1,2,1)+\mathrm{k}(-1,-2,1), \mathrm{k} \in \mathrm{R}\) the point which is at \(\sqrt{6}\) dist. away from \((2,4,0)\) is (A) \((1,2,1)(3,6,-1)\) (B) \((1,2,1)(3,-6,-1)\) (C) \((-1,-2,1)(3,6,-1)\) (D) None of these
The Image of point \((1,3,4)\) with respect to the plane \(2 x-y+z+3=0\) is (A) \((3,5,2)\) (B) \((-3,-5,2)\) (C) \((-3,-5,-2)\) (D) \((-3,5,2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.