Chapter 16: Problem 1489
If vector \(\underline{r}\) forms an angle \(\alpha, \beta, \gamma\) with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) -axis then \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\) (A) 1 (B) 2 (C) \(-1\) (D) \(-2\)
Chapter 16: Problem 1489
If vector \(\underline{r}\) forms an angle \(\alpha, \beta, \gamma\) with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) -axis then \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\) (A) 1 (B) 2 (C) \(-1\) (D) \(-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe Image of point \((1,3,4)\) with respect to the plane \(2 x-y+z+3=0\) is (A) \((3,5,2)\) (B) \((-3,-5,2)\) (C) \((-3,-5,-2)\) (D) \((-3,5,2)\)
\([(2-3 \mathrm{x}) / 6]=[(\mathrm{y}+1) / 2]=[(1-z) /(-2)]\) direction of line \(\overline{(A)}+2,2,2\) (B) \(-1,1,1\) (C) \(-3,2,2\) (D) \(6,2,-2\)
The locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
\([(x-1) / 3]=[(y+1) / 2]=[(z-1) / 5]\) and \([(\mathrm{x}-2) / 4]=[(\mathrm{y}-1) / 3]=[(\mathrm{z}+1) /(-2)]\) lines are (A) parallel (B) coincident (C) Intersecting (D) skew
Line \(\underline{r}=(1,2,1)+\mathrm{k}(-1,-2,1), \mathrm{k} \in \mathrm{R}\) the point which is at \(\sqrt{6}\) dist. away from \((2,4,0)\) is (A) \((1,2,1)(3,6,-1)\) (B) \((1,2,1)(3,-6,-1)\) (C) \((-1,-2,1)(3,6,-1)\) (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.