Chapter 16: Problem 1496
If angle between two vectors \(\mathrm{i}+\sqrt{3} \mathrm{j}\) and \(\sqrt{3 \mathrm{i}+\mathrm{a} j \text { is }(\pi / 3) \text { , }}\) then \(\mathrm{a}=\) (A) 0 (B) 3 (C) \(-3\) (D) none of these
Chapter 16: Problem 1496
If angle between two vectors \(\mathrm{i}+\sqrt{3} \mathrm{j}\) and \(\sqrt{3 \mathrm{i}+\mathrm{a} j \text { is }(\pi / 3) \text { , }}\) then \(\mathrm{a}=\) (A) 0 (B) 3 (C) \(-3\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeFoot of perpendicular and perpendicular distance from \(\mathrm{P}(2,-1,5)\) and line \([(\mathrm{x}-1) / 10]=[(\mathrm{y}+2) /(-4)]=[(\mathrm{z}+8) /(-11)]\) is (A) \((-1,-2,3), \sqrt{14}\) (B) \((1,2,3), 14\) (C) \((-1,-2,-3), \sqrt{14}\) (D) \((1,2,3), \sqrt{14}\)
If plane \(2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=-3\) express in form of \(x \cos \alpha+y \cos \beta+z \cos \gamma=p\), then perpendicular distance from origin to the plane is foot of perpendicular is and direction cosine is (A) \(1,[-(2 / 3),(2 / 3),-\overline{(1 / 3)}],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (B) \(2,[-(2 / 3),(2 / 3),-(1 / 3)],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (C) \(1,[(2 / 3),(2 / 3),-(1 / 3)],(2 / 3),(2 / 3),(1 / 3)\) (D) None of these
If angle between two unit vectors \(\underline{a} \& \underline{b}\) is \(\alpha\), then \(|\underline{\mathrm{a}}-\underline{\mathrm{b}} \cos \alpha|=0<\alpha<(\pi / 2)\) (A) \(\sin \alpha\) (B) \(\sin (\alpha / 2)\) (C) \(\sin 2 \alpha\) (D) \(\sin ^{2}(\alpha / 2)\)
\([(2-3 \mathrm{x}) / 6]=[(\mathrm{y}+1) / 2]=[(1-z) /(-2)]\) direction of line \(\overline{(A)}+2,2,2\) (B) \(-1,1,1\) (C) \(-3,2,2\) (D) \(6,2,-2\)
Line \(L: \underline{r}=(8,-9,10)+k(3,-16,7), \mathrm{k} \in R\) and \(\mathrm{M}: \underline{\mathrm{r}}=(15,29,5)+\mathrm{k}(3,8,-5), \mathrm{k} \in \mathrm{R} .\) If \(\mathrm{P} \in \mathrm{L}, \mathrm{Q} \in \mathrm{M}\), where \(\underline{P Q}\) is shortest distance between \(L\) and \(M\) then \(P Q=\) (A) \(\sqrt{14}\) (B) 14 (C) \((1 / 14)\) (D) \((1 / \sqrt{14})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.