Chapter 16: Problem 1496
If angle between two vectors \(\mathrm{i}+\sqrt{3} \mathrm{j}\) and \(\sqrt{3 \mathrm{i}+\mathrm{a} j \text { is }(\pi / 3) \text { , }}\) then \(\mathrm{a}=\) (A) 0 (B) 3 (C) \(-3\) (D) none of these
Chapter 16: Problem 1496
If angle between two vectors \(\mathrm{i}+\sqrt{3} \mathrm{j}\) and \(\sqrt{3 \mathrm{i}+\mathrm{a} j \text { is }(\pi / 3) \text { , }}\) then \(\mathrm{a}=\) (A) 0 (B) 3 (C) \(-3\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf y-intercept of plane \((x-y+z-1)+\lambda(x+y-z-1)=0\) is 3 unit then \(\lambda=\) (A) \(-2\) (B) 2 (C) \((\mathrm{D})-(1 / 2)\)
The direction cosine of \(\mathrm{x}=\mathrm{ay}+\mathrm{b}, \mathrm{z}=\mathrm{cy}+\mathrm{d}\) (A) \(\pm\left[a / \sqrt{\left(a^{2}+c^{2}+1\right)}\right], \pm\left[1 / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left.\pm\left[\mathrm{c} / \sqrt{(} \mathrm{a}^{2}+\mathrm{c}^{2}+1\right)\right]\) (C) \(\left[(-a) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right],\left[(-1) / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left[(-c) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right]\) (D) None of these
Lines \(\underline{r}=(2,1,3)+\mathrm{k}(1,-1,1)\) and \(\underline{\mathrm{r}}=(3,0,4)+\mathrm{k}(-1,1,-1)\) are \((\mathrm{k} \in \mathrm{R})\) (A) coincident (B) skew (C) Intersecting (D) Parallel
The Image of point \((1,3,4)\) with respect to the plane \(2 x-y+z+3=0\) is (A) \((3,5,2)\) (B) \((-3,-5,2)\) (C) \((-3,-5,-2)\) (D) \((-3,5,2)\)
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
What do you think about this solution?
We value your feedback to improve our textbook solutions.