\(\underline{\mathrm{x}}=(2,-6,3), \mathrm{y}=(1,2,-2)\) and \(\underline{\mathrm{x}}^{\wedge} \mathrm{y}=\theta\), then \(\sin \theta=\) (A) \([21 / \sqrt{(185)}]\) (B) \(-[\sqrt{(185) / 21]}\) (C) \(-[21 / \sqrt{(185)}]\) (D) \([\sqrt{(185) / 21]}\)

Short Answer

Expert verified
The short answer is: \(\sin{\theta} = \dfrac{\sqrt{249}}{21}\) (Option A).

Step by step solution

01

Calculate the cross product of the vectors

To calculate the cross product of the two vectors, \(\underline{x}\) and \(y\), we use the following formula: \[\underline{x}\times y=\begin{pmatrix} i & j & k \\ 2 & -6 & 3 \\ 1 & 2 & -2 \end{pmatrix}\] Using the determinants method, we find: \[\underline{x}\times y = (3 \times (-2) - 2 \times 2)i - (2 \times (-2) - 1 \times 3)j + (2 \times 2 - 1 \times (-6))k\] \[\underline{x}\times y = (-6 - 4)i - (-4 -3)j + (4 + 6)k = -10i + 7j + 10k\] So, \(\underline{x}\times y = (-10, 7, 10)\).
02

Calculate the magnitudes of the vectors

We need to calculate the magnitudes of the vectors \(\underline{x}\) and \(y\), denoted as \(|\underline{x}|\) and \(|y|\), respectively: \[|\underline{x}| = \sqrt{(2)^2 + (-6)^2 + (3)^2} = \sqrt{4 + 36 + 9} = \sqrt{49} = 7\] \[|y| = \sqrt{(1)^2 + (2)^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3\]
03

Solve for \(\sin{\theta}\)

Now we have all the values needed to calculate \(\sin{\theta}\): \[\sin{\theta} = \dfrac{|\underline{x}\times y|}{|\underline{x}||y|} = \dfrac{\sqrt{(-10)^2 + 7^2 + 10^2}}{7\cdot 3} = \dfrac{\sqrt{100+49+100}}{21} = \dfrac{\sqrt{249}}{21}\]
04

Identify the correct option

Comparing our result with the given options, we can see that our answer matches option (A): \[\sin{\theta} = \dfrac{\sqrt{249}}{21}\] So the correct answer is option (A).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If plane \(2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=-3\) express in form of \(x \cos \alpha+y \cos \beta+z \cos \gamma=p\), then perpendicular distance from origin to the plane is foot of perpendicular is and direction cosine is (A) \(1,[-(2 / 3),(2 / 3),-\overline{(1 / 3)}],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (B) \(2,[-(2 / 3),(2 / 3),-(1 / 3)],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (C) \(1,[(2 / 3),(2 / 3),-(1 / 3)],(2 / 3),(2 / 3),(1 / 3)\) (D) None of these

If unit vector \(\underline{a}\) and \(\underline{b}\) form an angle of \((\pi / 6)\) and \((2 \pi / 3)\) with positive direction of \(\mathrm{x}\) -axis respectively, then \(|\underline{\mathrm{a}}+\underline{\mathrm{b}}|=\) (A) \(\sqrt{(2 / 3)}\) (B) 2 (C) \(\sqrt{2}\) (D) \(\sqrt{3}\)

The foot of the perpendicular and perpendicular distance from point \((1,2,3)\) to plane \(x-2 y+2 z=5\) is and respectively (A) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (B) \([\\{(-11) / 9\\},\\{(-14) / 9\\},\\{(-31) / 9\\}],(2 / 3)\) (C) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (D) \([(11 / 9),(14 / 9),\\{(-31) / 9\\}],(2 / 3)\)

If angle between two units vectors \(\underline{a}\) and \(\underline{b}\) is \(\theta\), then \(\sin (\theta / 2)=\) (A) \(|\underline{a}+\underline{b}|\) (B) \((1 / 2)|\underline{a}-\underline{b}|\) (C) \(|\underline{a}-\underline{b}|\) (D) \((1 / 2)|\underline{a}+\underline{b}|\)

The angle between two unit vectors a and \(\underline{b}\) is \(\theta,|\underline{a}+\underline{b}|<1\) if (A) \(\theta=(\pi / 2)\) (B) \(\theta>(\pi / 3)\) (C) \((2 \pi / 3)<\theta<\pi\) (D) \(\theta=(\pi / 6)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free