If angle between \(\underline{a}\) and \(\underline{b}\) is \(\theta\), then \([(|\underline{\mathbf{a}} \times \underline{\mathrm{b}}|) /(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}})]=\) \(\begin{array}{llll}(\text { A })-\cot \theta & \text { (B) }-\tan \theta & \text { (C) } \tan \theta & \text { (D) } \cot \theta\end{array}\)

Short Answer

Expert verified
The short answer is: \[(C) \tan \theta\]

Step by step solution

01

Cross Product and Dot Product Properties

We will use the following properties of cross and dot products: 1. \(|\underline{\mathbf{a}} \times \underline{\mathrm{b}}|=|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\sin{\theta}\), where \(|\underline{\mathrm{a}}|\) and \(|\underline{\mathrm{b}}|\) are the magnitudes of vectors \(\underline{a}\) and \(\underline{b}\), respectively, and \(\theta\) is the angle between them. 2. \(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}}=|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\cos{\theta}\), where \(|\underline{\mathrm{a}}|\) and \(|\underline{\mathrm{b}}|\) are the magnitudes of vectors \(\underline{a}\) and \(\underline{b}\), respectively, and \(\theta\) is the angle between them. Now, we need to find the value of \([(|\underline{\mathbf{a}} \times \underline{\mathrm{b}}|)/(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}})]\) using these properties.
02

Substitute the Cross and Dot Product Properties

We will substitute the expressions from step 1 into the requested expression: \(\frac{|\underline{\mathbf{a}} \times \underline{\mathrm{b}}| /(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}})} = \frac{|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\sin{\theta}}{|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\cos{\theta}}\)
03

Simplify the Expression

Cancel out the magnitudes of the two vectors and simplify: \(\frac{|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\sin{\theta}}{|\underline{\mathrm{a}}||\underline{\mathrm{b}}|\cos{\theta}} = \frac{\sin{\theta}}{\cos{\theta}}\)
04

Recognize the Trigonometric Identity

The expression \(\frac{\sin{\theta}}{\cos{\theta}}\) is equal to the tangent of the angle \(\theta\). So, we have: \(\frac{|\underline{\mathbf{a}} \times \underline{\mathrm{b}}| /(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}})} = \tan{\theta}\) Thus, the correct answer is: (C) \(\tan \theta\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The foot of the perpendicular and perpendicular distance from point \((1,2,3)\) to plane \(x-2 y+2 z=5\) is and respectively (A) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (B) \([\\{(-11) / 9\\},\\{(-14) / 9\\},\\{(-31) / 9\\}],(2 / 3)\) (C) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (D) \([(11 / 9),(14 / 9),\\{(-31) / 9\\}],(2 / 3)\)

If \(\mathrm{A}(\mathrm{a}, 1,3), \mathrm{B}(-1, \mathrm{~b}, 2), \mathrm{C}(1,0, \mathrm{c})\) are the vertices of \(\Delta \mathrm{ABC}\) whose centroid is \((2,3,5)\), then values of \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are respectively (A) \(10,8,6\) (B) \(6,10,8\) (C) \(8,6,10\) (D) \(6,8,10\)

If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)

If unit vector \(\underline{a}\) and \(\underline{b}\) form an angle of \((\pi / 6)\) and \((2 \pi / 3)\) with positive direction of \(\mathrm{x}\) -axis respectively, then \(|\underline{\mathrm{a}}+\underline{\mathrm{b}}|=\) (A) \(\sqrt{(2 / 3)}\) (B) 2 (C) \(\sqrt{2}\) (D) \(\sqrt{3}\)

The unit vector which is perpendicular to \((2,-4,3)\) and \((5,0,1)\), is (A) \([\\{4 / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (B) \([\\{(-4) / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\}},\\{(-20) / \sqrt{(585)\\}}]\) (C) \([\\{(-4) / \sqrt{(585)\\}},\\{(-13) / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (D) \([\\{(-4) / \sqrt{(585)\\},\\{13 / \sqrt{(585})\\},\\{20 / \sqrt{(585})\\}]}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free