Chapter 16: Problem 1508
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
Chapter 16: Problem 1508
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf angle between two vectors \(\mathrm{i}+\sqrt{3} \mathrm{j}\) and \(\sqrt{3 \mathrm{i}+\mathrm{a} j \text { is }(\pi / 3) \text { , }}\) then \(\mathrm{a}=\) (A) 0 (B) 3 (C) \(-3\) (D) none of these
If lines \([(\mathrm{x}-1) / 2]=[(\mathrm{y}-3) / 4]=\mathrm{z}\) and \([(x-4) / 3]=[(1-y) / 2]=[(z-1) / 1]\) are co-planer, then the equation of plane containing these two lines is (A) \(6 \mathrm{x}+\mathrm{y}+16 \mathrm{z}=9\) (B) \(6 \mathrm{x}+\mathrm{y}-16 \mathrm{z}=9\) (C) \(6 \mathrm{x}-\mathrm{y}-16 \mathrm{z}=9\) (D) \(6 \mathrm{x}-\mathrm{y}+16 \mathrm{z}=9\)
Line \([\\{\sqrt{(2) x-3 \sqrt{2}\\} / 1]}=[\\{2 \sqrt{2}-\sqrt{(2) \mathrm{y}\\} / 2], \mathrm{z}+1}=0\) direction cosine (A) \((1 / \sqrt{5}),-(2 \overline{/ \sqrt{5}}), 0\) (B) \(-(1 / \sqrt{5}),(1 / \sqrt{5}), 0\) (C) \((1 / \sqrt{5}), 0,(1 / \sqrt{5})\) (D) \((1 / \sqrt{5}),-(1 / \sqrt{5}), 0\)
Direction cosine of line \(\mathrm{x}=3-2 \mathrm{y}, \mathrm{z}=2 \mathrm{y}-1\) is (A) \([\\{(-2) / 3\\},(1 / 3),(2 / 3)]\) (B) \([\\{(-2) / 3\\},\\{(-1) / 3\\},(2 / 3)]\) (C) \([(2 / 3),(1 / 3),(2 / 3)]\) (D) None of these
The Equation of line passing through \((1,2,1)\) and \([(2 \mathrm{x}-1) / 3]=[(1-\mathrm{y}) / 3]=[(3 \mathrm{z}-2) / 5] \mathrm{is}\) (A) \([(2 \mathrm{x}-2) / 3]=[(2-\mathrm{y}) / 3]=[(3 \mathrm{z}-3) / 5]\) (B) \([(2 x+2) / 3]=[(2+y) / 3]=[(3 z+3) / 5]\) (C) \([(2 x-1) /(-3)]=[(1-y) /(-3)]=[(3 z-2) /(-1)]\) (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.