Chapter 16: Problem 1508
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
Chapter 16: Problem 1508
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
All the tools & learning materials you need for study success - in one app.
Get started for freeThe locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
For points \(\mathrm{A}(1,2,3), \mathrm{B}(5,4,1)\), the equation of plane which is perpendicular bisector of \(\underline{A B}\) is (A) \(x+2 y-7+z=0\) (B) \(2 x+y-z=7\) (C) \(x+2 y+z+7=0\) (D) \(2 x-2 y-z=7\)
The co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
Foot of perpendicular and perpendicular distance from \(\mathrm{P}(2,-1,5)\) and line \([(\mathrm{x}-1) / 10]=[(\mathrm{y}+2) /(-4)]=[(\mathrm{z}+8) /(-11)]\) is (A) \((-1,-2,3), \sqrt{14}\) (B) \((1,2,3), 14\) (C) \((-1,-2,-3), \sqrt{14}\) (D) \((1,2,3), \sqrt{14}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.