Chapter 16: Problem 1511
For vector a and \(\underline{b},|\underline{a}+\underline{b}|<|\underline{a}-\underline{b}|\), then the angle between \(\underline{a}\) and \(\underline{b}\) is (A) obtuse (B) Acute (C) Right (D) supplementary
Chapter 16: Problem 1511
For vector a and \(\underline{b},|\underline{a}+\underline{b}|<|\underline{a}-\underline{b}|\), then the angle between \(\underline{a}\) and \(\underline{b}\) is (A) obtuse (B) Acute (C) Right (D) supplementary
All the tools & learning materials you need for study success - in one app.
Get started for freeLine of intersection of the planes \(2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=1\), \(x+2 y-2 z=1\) and \(6 x+2 y+3 z=1,6 x+2 y-3 z=1\) is and point of intersection is (A) intersecting \((1,1,1)\) (B) Perpendicular \((-1,1,1)\) (C) non-co-planer lines, does not exist (D) Parallel, does not exist
The equation of plane which is perpendicular to the planes \(3 \mathrm{x}+\mathrm{y}+\mathrm{z}=0\) and \(\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=5\) and passing through \((1,3,5)\) is (A) \(x+2 y \bar{z}=0\) (B) \(x-2 y-z=0\) (C) \(x-2 y+z=0\) (D) \(x+2 y-z=0\)
The angle between two unit vectors a and \(\underline{b}\) is \(\theta,|\underline{a}+\underline{b}|<1\) if (A) \(\theta=(\pi / 2)\) (B) \(\theta>(\pi / 3)\) (C) \((2 \pi / 3)<\theta<\pi\) (D) \(\theta=(\pi / 6)\)
The equation of the plane which intersects the axis at \(\mathrm{A}, \mathrm{B}\), \(\mathrm{C}\) and the centroid of \(\Delta \mathrm{ABC}\) is \((\alpha, \beta, \gamma)\) is (A) \(x+y+z=3 \alpha \beta \gamma\) (B) \(x+y+z=3\) (C) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=3\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
The direction cosine of \(\mathrm{x}=\mathrm{ay}+\mathrm{b}, \mathrm{z}=\mathrm{cy}+\mathrm{d}\) (A) \(\pm\left[a / \sqrt{\left(a^{2}+c^{2}+1\right)}\right], \pm\left[1 / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left.\pm\left[\mathrm{c} / \sqrt{(} \mathrm{a}^{2}+\mathrm{c}^{2}+1\right)\right]\) (C) \(\left[(-a) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right],\left[(-1) / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left[(-c) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right]\) (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.