Chapter 16: Problem 1511
For vector a and \(\underline{b},|\underline{a}+\underline{b}|<|\underline{a}-\underline{b}|\), then the angle between \(\underline{a}\) and \(\underline{b}\) is (A) obtuse (B) Acute (C) Right (D) supplementary
Chapter 16: Problem 1511
For vector a and \(\underline{b},|\underline{a}+\underline{b}|<|\underline{a}-\underline{b}|\), then the angle between \(\underline{a}\) and \(\underline{b}\) is (A) obtuse (B) Acute (C) Right (D) supplementary
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{A}(\mathrm{a}, 1,3), \mathrm{B}(-1, \mathrm{~b}, 2), \mathrm{C}(1,0, \mathrm{c})\) are the vertices of \(\Delta \mathrm{ABC}\) whose centroid is \((2,3,5)\), then values of \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are respectively (A) \(10,8,6\) (B) \(6,10,8\) (C) \(8,6,10\) (D) \(6,8,10\)
For vectors \(\underline{a}, \underline{b}, c \underline{c}\) if each vector is perpendicular to the sum of remaining two vectors and \(|\underline{\mathrm{a}}|=3,|\underline{\mathrm{b}}|=4,|\underline{\mathrm{c}}|=5\), then \(|\underline{a}+\underline{b}+\underline{c}|=\) (A) \(2 \sqrt{2}\) (B) \(3 \sqrt{2}\) (C) \(4 \sqrt{2}\) (D) \(5 \sqrt{2}\)
If \(\mathrm{m} \angle \mathrm{B}=(\pi / 2)\) in \(\Delta \mathrm{ABC}\) and \(\mathrm{P}, \mathrm{Q}\) are points of trisection of hypotenuse \(\underline{\mathrm{A}} \mathrm{C}\), then \(\mathrm{BP}^{2}+\mathrm{BQ}^{2}=\) (A) \((5 / 9) \mathrm{AC}^{2}\) (B) \((5 / 9) \mathrm{AC}\) (C) \((25 / 81) \mathrm{AC}^{2}\) (D) \((25 / 81) \mathrm{AC}\)
If vector \(\underline{x}\) forms an equal angle \(\alpha\) with three axis and \(|\underline{x}|=9\) then \(\alpha=\quad\) where \(0<\alpha<(\pi / 2)\) (A) \(\cos ^{-1}(1 / \sqrt{2})\) (B) \(\cos ^{-1}(1 / 9)\) (C) \(\cos ^{-1}(1 / \sqrt{3})\) (D) \(\cos ^{-1}(1 / 3)\)
If \(4 x-81 y+9 z=1\) is equation plane, then sum of its intercepts is (A) \([(1017) \overline{/(2916)}]\) (B) \([(1017) /(2916)]\) (C) \([(101) /(2916)]\) (D) \([(-1017) /(2916)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.