If unit vector \(\underline{a}\) and \(\underline{b}\) form an angle of \((\pi / 6)\) and \((2 \pi / 3)\) with positive direction of \(\mathrm{x}\) -axis respectively, then \(|\underline{\mathrm{a}}+\underline{\mathrm{b}}|=\) (A) \(\sqrt{(2 / 3)}\) (B) 2 (C) \(\sqrt{2}\) (D) \(\sqrt{3}\)

Short Answer

Expert verified
\( |\underline{a} + \underline{b}| = \sqrt{\frac{2}{3}}\)

Step by step solution

01

Determine the components of unit vectors

Since the magnitude of a unit vector is 1, we can use basic trigonometry to find the components of \(\underline{a}\) and \(\underline{b}\). For any vector and its angle with the x-axis, the components are: \(a_x = |\underline{a}| \cos{\theta_a}\) \(a_y = |\underline{a}| \sin{\theta_a}\) \(b_x = |\underline{b}| \cos{\theta_b}\) \(b_y = |\underline{b}| \sin{\theta_b}\) In this case, we have: \(a_x = \cos{\frac{\pi}{6}}\) \(a_y = \sin{\frac{\pi}{6}}\) Furthermore, \(b_x = \cos{\frac{2\pi}{3}}\) \(b_y = \sin{\frac{2\pi}{3}}\)
02

Add both vectors component-wise

To obtain the sum of these vectors, we add their respective components: \((a_x + b_x) = \cos{\frac{\pi}{6}} + \cos{\frac{2\pi}{3}}\) \((a_y + b_y) = \sin{\frac{\pi}{6}} + \sin{\frac{2\pi}{3}}\)
03

Calculate the magnitude of the sum vector

Now, we can find the magnitude of the sum vector using the calculated components: \( |\underline{a} + \underline{b}| = \sqrt{(a_x + b_x)^2 + (a_y + b_y)^2} \) \(= \sqrt{(\cos{\frac{\pi}{6}} + \cos{\frac{2\pi}{3}})^2 + (\sin{\frac{\pi}{6}} + \sin{\frac{2\pi}{3}})^2} \) After simplifying: \(= \sqrt{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)^2 + \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)^2} \) \(= \sqrt{\frac{3}{4}} \) Comparing with the given choices: \( |\underline{a} + \underline{b}| = \boxed{\text{(A) } \sqrt{\frac{2}{3}}} \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equation of line passes through \(\mathrm{A}(-2,4,7)\) and direction \((5,-9,12)\) is (A) \(x=-2+\overline{k 5, y}=4-9 k, z=7-12 k, k \in R\) (B) \(\mathrm{x}=-2+\mathrm{k} 5, \mathrm{y}=4-9 \mathrm{k}, \mathrm{z}=7+12 \mathrm{k}, \mathrm{k} \in \mathrm{R}\) (C) \(x=2+5 k, y=4-9 k, z=7+12 k, k \in R\) (D) None of these

Line \([(x-1) / c]=[(y+3) /(-1)]=[(z-3) / 2]\) and \([(x-3) / 6]=[(y-1) / 3]=[(4-z) / 6]\) if direction are same then \(\mathrm{c}=\) (A) \(-2\) (B) 2 (C) \((1 / 3)\) (D) \(-(1 / 3)\)

Direction cosine of line \([(4-x) / 7]=[(y+9) / 5]=[(3 z+8) / 2]\) is (A) \(-[21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (B) \([21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (C) \([21 / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (D) \([(-21) / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[(-2) / \sqrt{(670)}]\)

Line of intersection of the planes \(2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=1\), \(x+2 y-2 z=1\) and \(6 x+2 y+3 z=1,6 x+2 y-3 z=1\) is and point of intersection is (A) intersecting \((1,1,1)\) (B) Perpendicular \((-1,1,1)\) (C) non-co-planer lines, does not exist (D) Parallel, does not exist

The equation of line passes through \((1,2,3)\) and \((x / 1)=(y / 2)=[z /(-1)]\) and \([(x-1) / 3]=(y / 2)=(z / 6)\) and perpendicular to given two line is (A) \([(\mathrm{x}-1) / 14]=[(\mathrm{y}-2) /(-9)]=[(\mathrm{z}-3) /(-4)]\) (B) \([(\mathrm{x}+1) / 14]=[(\mathrm{y}+2) /(-9)]=[(\mathrm{z}+3) / 4]\) (C) \([(\mathrm{x}-1) / 14]=[(\mathrm{y}-2) / 9]=[(\mathrm{z}-3) /(-4)]\) (D) \([(\mathrm{x}+1) /(-14)]=[(\mathrm{y}+2) / 9]=[(\mathrm{z}+3) / 4]\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free