Chapter 16: Problem 1519
Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)
Chapter 16: Problem 1519
Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
If length each sides of cube is one unit, then shortest distance between diagonal \(\underline{\mathrm{OO}^{\prime}}\) and one edge \(\underline{\mathrm{AB}}^{\prime}\) which is non-co-planer to \(\underline{\mathrm{OO}}^{\prime}\) is (A) \((1 / 2)\) (B) \((1 / \sqrt{2})\) (C) \(\sqrt{2}\) (d) 2
The equation of plane which is passing through \((2,1,3)\) and having equal \(X\) and Y-intercept and \(Z\) -intercept 14 is (A) \(11 \mathrm{x}-11 \mathrm{y}+3 \mathrm{z}=42\) (B) \(11 \mathrm{x}+11 \mathrm{y}+3 z=42\) (C) \(11 \mathrm{x}+11 \mathrm{y}-3 \mathrm{z}=42\) (D) \(11 \mathrm{x}+11 \mathrm{y}+3 \mathrm{z}+42=0\)
The co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
For \(\underline{x}=(a, 3,-2), y=(a,-a, 2)\), if \(\underline{x} \perp y\), then \(a=\) (A) 4,1 (B) \(4,-1\) (C) \(-4,-1\) (D) \(-4,1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.