Chapter 16: Problem 1519
Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)
Chapter 16: Problem 1519
Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of plane passing through the lines \((\mathrm{x} / 2)=[(\mathrm{y}-1) / 1]=[(\mathrm{z}+2) / 2]\) and \([(2 \mathrm{x}+3) / 4]=[(3-\mathrm{y}) /(-1)]=(\mathrm{z} / 2)\) is (A) \(4 \mathrm{x}+11 \mathrm{y}+14 z=36\) (B) \(\overline{4 x+1} 4 y-11 z=36\) (C) \(4 \mathrm{x}-14 \mathrm{y}-11 \mathrm{z}=36\) (D) \(4 \mathrm{x}-14 \mathrm{y}+11 \mathrm{z}=36\)
The Image of point \((1,3,4)\) with respect to the plane \(2 x-y+z+3=0\) is (A) \((3,5,2)\) (B) \((-3,-5,2)\) (C) \((-3,-5,-2)\) (D) \((-3,5,2)\)
If perpendicular distance from \((0,0,0)\) to the variable plane is \(\mathrm{p}\) and variable plane intersects the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), the centroid of \(\Delta \mathrm{ABC}\) is on \(\left(1 / \mathrm{x}^{2}\right)+\left(1 / \mathrm{y}^{2}\right)+\left(1 / \mathrm{z}^{2}\right)=\) (A) \(\left(9 / \mathrm{p}^{2}\right)\) (B) \(\left(\mathrm{p}^{2} / 9\right)\) (C) \((\mathrm{p} / 9)\) (D) \((9 / \mathrm{p})\)
For points \(\mathrm{A}(1,2,3), \mathrm{B}(5,4,1)\), the equation of plane which is perpendicular bisector of \(\underline{A B}\) is (A) \(x+2 y-7+z=0\) (B) \(2 x+y-z=7\) (C) \(x+2 y+z+7=0\) (D) \(2 x-2 y-z=7\)
For \(\mathrm{A}(7,-3,1)\) and \(\mathrm{B}(4,9,8)\), the point that divides \(\underline{\mathrm{AB}}\) from \(\mathrm{B}\) in the ratio \(2: 5\) is (A) \([(34 / 7),(39 / 7 \overline{),(42} / 7)]\) (B) \([(34 / 7),(39 / 7),\\{(-42) / 7\\}]\) (C) \([\\{(-34) / 7\\},(39 / 7),\\{(-42) / 7\\}]\) (D) \([\\{(-34) / 7\\},\\{(-39) / 7\\},\\{(-42) / 7\\}]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.