Chapter 16: Problem 1531
Line \(\mathrm{x}=2 \mathrm{y}+1,2 \mathrm{y}=1-\mathrm{z}\) and \(2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0, \mathrm{z}+2=0\) angle between two line (A) 0 (B) \(\overline{(\pi / 4)}\) (C) \((\pi / 3)\) (D) \((\pi / 2)\)
Chapter 16: Problem 1531
Line \(\mathrm{x}=2 \mathrm{y}+1,2 \mathrm{y}=1-\mathrm{z}\) and \(2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0, \mathrm{z}+2=0\) angle between two line (A) 0 (B) \(\overline{(\pi / 4)}\) (C) \((\pi / 3)\) (D) \((\pi / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe foot of the perpendicular and perpendicular distance from point \((1,2,3)\) to plane \(x-2 y+2 z=5\) is and respectively (A) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (B) \([\\{(-11) / 9\\},\\{(-14) / 9\\},\\{(-31) / 9\\}],(2 / 3)\) (C) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (D) \([(11 / 9),(14 / 9),\\{(-31) / 9\\}],(2 / 3)\)
The shortest distance between two lines \([(\mathrm{x}-1) / 1]=[(\mathrm{y}+1) / 3]=\mathrm{z}\) and \([(\mathrm{x}-1) / 3]=[(\mathrm{y}-2) / 1]\) \(z=2\) is (A) \((7 / \overline{14)}\) (B) \((\sqrt{7} / 74)\) (C) \((7 / \sqrt{74})\) (D) \(\sqrt{(7 / 74)}\)
For Lines: \(L:[(x-23) /(-6)]=[(y-19) /(-4)]=[(z-25) / 3]\) and M: \([(x-12) /(-9)]=[(y-1) / 4]=[(z-5) / 2]\) and \(P \in L\) \(\mathrm{Q} \in \mathrm{M}, \underline{\mathrm{PQ}} \perp \mathrm{L}\) and \(\underline{\mathrm{PQ}} \perp \mathrm{M}\), then \(\mathrm{PQ}=\) (A) \(\sqrt{26}\) (B) \(\overline{(1 / 26)}\) (C) \((1 / \sqrt{2} 6)\) (D) 26
Direction cosine of line \(2 \mathrm{x}=3 \mathrm{y}+5, \mathrm{z}=7-(\mathrm{y} / 5)\) is (A) \([10 / \sqrt{(235)}],[15 / \sqrt{(235)}]\), [3 / V(235)] (B) \([(-10) / \sqrt{(} 235)],[(-15) / \sqrt{(235)}],[(-3) / \sqrt{(235)}]\) (C) \([10 / \sqrt{(235)}],[(-15) / \sqrt{(235)}],[3 / \sqrt{(235)}]\) (D) None of these
The unit vector which is perpendicular to \((2,-4,3)\) and \((5,0,1)\), is (A) \([\\{4 / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (B) \([\\{(-4) / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\}},\\{(-20) / \sqrt{(585)\\}}]\) (C) \([\\{(-4) / \sqrt{(585)\\}},\\{(-13) / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (D) \([\\{(-4) / \sqrt{(585)\\},\\{13 / \sqrt{(585})\\},\\{20 / \sqrt{(585})\\}]}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.