Chapter 16: Problem 1531
Line \(\mathrm{x}=2 \mathrm{y}+1,2 \mathrm{y}=1-\mathrm{z}\) and \(2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0, \mathrm{z}+2=0\) angle between two line (A) 0 (B) \(\overline{(\pi / 4)}\) (C) \((\pi / 3)\) (D) \((\pi / 2)\)
Chapter 16: Problem 1531
Line \(\mathrm{x}=2 \mathrm{y}+1,2 \mathrm{y}=1-\mathrm{z}\) and \(2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0, \mathrm{z}+2=0\) angle between two line (A) 0 (B) \(\overline{(\pi / 4)}\) (C) \((\pi / 3)\) (D) \((\pi / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{G}(0)\) is centroid of \(\triangle \mathrm{ABC}\), then \(\underline{\mathrm{GA}}+\underline{\mathrm{GB}}+\underline{\mathrm{GC}}=\) (A) \(\underline{0}\) (B) 0 (C) \(\underline{x}+y+\underline{z}\) (D) \([(\underline{x}+y+\underline{z}) / 3]\)
The co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
Line \(\underline{r}=(1,2,1)+\mathrm{k}(-1,-2,1), \mathrm{k} \in \mathrm{R}\) the point which is at \(\sqrt{6}\) dist. away from \((2,4,0)\) is (A) \((1,2,1)(3,6,-1)\) (B) \((1,2,1)(3,-6,-1)\) (C) \((-1,-2,1)(3,6,-1)\) (D) None of these
\(\underline{\mathrm{x}}=(2,-6,3), \mathrm{y}=(1,2,-2)\) and \(\underline{\mathrm{x}}^{\wedge} \mathrm{y}=\theta\), then \(\sin \theta=\) (A) \([21 / \sqrt{(185)}]\) (B) \(-[\sqrt{(185) / 21]}\) (C) \(-[21 / \sqrt{(185)}]\) (D) \([\sqrt{(185) / 21]}\)
In \(\triangle \mathrm{ABC}\), if mid points of \(\underline{\underline{A B}}\) and \(\underline{\mathrm{A} \mathrm{C}}\) are \(\mathrm{D}\) and \(\mathrm{E}\) respectively, then \(\underline{\mathrm{BE}}+\underline{\mathrm{DC}}=\) (A) \((3 / 2) \underline{\mathrm{BC}}\) (B) \((2 / 3) \underline{\mathrm{BE}}\) (C) \((3 / 2) \mathrm{BE}\) (D) \((2 / 3) \mathrm{BC}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.