Chapter 16: Problem 1542
Perpendicular distance from point \((1,3,4)\) to line \([(x-5) / 2]=[(y-6) /(-1)]=[(z+7) / 3]\) is (A) \([\sqrt{(1398) / 7]}\) (B) \([\sqrt{(1398) / 14}]\) (D) \([(1398) / 7]\)
Chapter 16: Problem 1542
Perpendicular distance from point \((1,3,4)\) to line \([(x-5) / 2]=[(y-6) /(-1)]=[(z+7) / 3]\) is (A) \([\sqrt{(1398) / 7]}\) (B) \([\sqrt{(1398) / 14}]\) (D) \([(1398) / 7]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDirection cosine of line \([(4-x) / 7]=[(y+9) / 5]=[(3 z+8) / 2]\) is (A) \(-[21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (B) \([21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (C) \([21 / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (D) \([(-21) / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[(-2) / \sqrt{(670)}]\)
For vectors \(\underline{a}, \underline{b}, c \underline{c}\) if each vector is perpendicular to the sum of remaining two vectors and \(|\underline{\mathrm{a}}|=3,|\underline{\mathrm{b}}|=4,|\underline{\mathrm{c}}|=5\), then \(|\underline{a}+\underline{b}+\underline{c}|=\) (A) \(2 \sqrt{2}\) (B) \(3 \sqrt{2}\) (C) \(4 \sqrt{2}\) (D) \(5 \sqrt{2}\)
Lines \([\\{(\mathrm{k}+3),-\mathrm{k}-1, \mathrm{k}+1\\} / \mathrm{k} \in \mathrm{R}\\},\\{(2 \mathrm{k}, 0,3 \mathrm{k}-3) / \mathrm{k} \in \mathrm{R}\\}\) are (A) parallel (B) Intersecting (C) coincident (D) skew
If y-intercept of plane \((x-y+z-1)+\lambda(x+y-z-1)=0\) is 3 unit then \(\lambda=\) (A) \(-2\) (B) 2 (C) \((\mathrm{D})-(1 / 2)\)
For \(\underline{x}=(a, 3,-2), y=(a,-a, 2)\), if \(\underline{x} \perp y\), then \(a=\) (A) 4,1 (B) \(4,-1\) (C) \(-4,-1\) (D) \(-4,1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.