Chapter 16: Problem 1542
Perpendicular distance from point \((1,3,4)\) to line \([(x-5) / 2]=[(y-6) /(-1)]=[(z+7) / 3]\) is (A) \([\sqrt{(1398) / 7]}\) (B) \([\sqrt{(1398) / 14}]\) (D) \([(1398) / 7]\)
Chapter 16: Problem 1542
Perpendicular distance from point \((1,3,4)\) to line \([(x-5) / 2]=[(y-6) /(-1)]=[(z+7) / 3]\) is (A) \([\sqrt{(1398) / 7]}\) (B) \([\sqrt{(1398) / 14}]\) (D) \([(1398) / 7]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe direction cosine of \(\mathrm{x}=\mathrm{ay}+\mathrm{b}, \mathrm{z}=\mathrm{cy}+\mathrm{d}\) (A) \(\pm\left[a / \sqrt{\left(a^{2}+c^{2}+1\right)}\right], \pm\left[1 / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left.\pm\left[\mathrm{c} / \sqrt{(} \mathrm{a}^{2}+\mathrm{c}^{2}+1\right)\right]\) (C) \(\left[(-a) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right],\left[(-1) / \sqrt{ \left.\left(a^{2}+c^{2}+1\right)\right]}\right.\) \(\left[(-c) / \sqrt{\left(a^{2}+c^{2}+1\right)}\right]\) (D) None of these
The equation of plane which is passing through \((2,1,3)\) and having equal \(X\) and Y-intercept and \(Z\) -intercept 14 is (A) \(11 \mathrm{x}-11 \mathrm{y}+3 \mathrm{z}=42\) (B) \(11 \mathrm{x}+11 \mathrm{y}+3 z=42\) (C) \(11 \mathrm{x}+11 \mathrm{y}-3 \mathrm{z}=42\) (D) \(11 \mathrm{x}+11 \mathrm{y}+3 \mathrm{z}+42=0\)
If length each sides of cube is one unit, then shortest distance between diagonal \(\underline{\mathrm{OO}^{\prime}}\) and one edge \(\underline{\mathrm{AB}}^{\prime}\) which is non-co-planer to \(\underline{\mathrm{OO}}^{\prime}\) is (A) \((1 / 2)\) (B) \((1 / \sqrt{2})\) (C) \(\sqrt{2}\) (d) 2
The angle between two unit vectors a and \(\underline{b}\) is \(\theta,|\underline{a}+\underline{b}|<1\) if (A) \(\theta=(\pi / 2)\) (B) \(\theta>(\pi / 3)\) (C) \((2 \pi / 3)<\theta<\pi\) (D) \(\theta=(\pi / 6)\)
The locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.