Chapter 16: Problem 1547
\(\mathrm{P}(1,6,3)\) to \((\mathrm{x} / 1)=[(\mathrm{y}-1) / 2]=[(\mathrm{z}-2) / 3]\) on then image of \(\mathrm{P}\) is (A) \(\overline{(-1,0,-7)}\) (B) \((-1,0,7)\) (C) \((1,0,7)\) (D) \((1,0,-7)\)
Chapter 16: Problem 1547
\(\mathrm{P}(1,6,3)\) to \((\mathrm{x} / 1)=[(\mathrm{y}-1) / 2]=[(\mathrm{z}-2) / 3]\) on then image of \(\mathrm{P}\) is (A) \(\overline{(-1,0,-7)}\) (B) \((-1,0,7)\) (C) \((1,0,7)\) (D) \((1,0,-7)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of the locus of point which are equidistance from \((4,5,2)\) and \((1,6,3)\) is (A) \(6 x-2 y-2 z+1=0\) (B) \(6 \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}+1=0\) (C) \(6 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+1=0\) (D) \(6 \mathrm{x}-2 \mathrm{y}-2 \mathrm{z}-1=0\)
If angle between two unit vectors \(\underline{a} \& \underline{b}\) is \(\alpha\), then \(|\underline{\mathrm{a}}-\underline{\mathrm{b}} \cos \alpha|=0<\alpha<(\pi / 2)\) (A) \(\sin \alpha\) (B) \(\sin (\alpha / 2)\) (C) \(\sin 2 \alpha\) (D) \(\sin ^{2}(\alpha / 2)\)
The equation of the line of the intersection of the planes \(x+2 y-3 z=6\) and \(2 x-y+z=7\) is (A) \([(\mathrm{x}-4) / 1]=[(\mathrm{y}-1) / 7]=(\mathrm{z} / 5)\) (B) \([(\mathrm{x}+4) / 1]=[(\mathrm{y}-1) / 7)=(\mathrm{z} / 5)\) (C) \([(\mathrm{x}+1) / 1]=[(\mathrm{y}+1) / 7]=(\mathrm{z} / 5)\) (D) \([(\mathrm{x}-1) /(-1)]=[(\mathrm{y}-1) /(-7)]=(\mathrm{z} / 5)\)
If \(\mathrm{m} \angle \mathrm{B}=(\pi / 2)\) in \(\Delta \mathrm{ABC}\) and \(\mathrm{P}, \mathrm{Q}\) are points of trisection of hypotenuse \(\underline{\mathrm{A}} \mathrm{C}\), then \(\mathrm{BP}^{2}+\mathrm{BQ}^{2}=\) (A) \((5 / 9) \mathrm{AC}^{2}\) (B) \((5 / 9) \mathrm{AC}\) (C) \((25 / 81) \mathrm{AC}^{2}\) (D) \((25 / 81) \mathrm{AC}\)
Line \(\mathrm{x}=2 \mathrm{y}+1,2 \mathrm{y}=1-\mathrm{z}\) and \(2 \mathrm{x}+\mathrm{y}+\mathrm{z}=0, \mathrm{z}+2=0\) angle between two line (A) 0 (B) \(\overline{(\pi / 4)}\) (C) \((\pi / 3)\) (D) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.