Chapter 16: Problem 1547
\(\mathrm{P}(1,6,3)\) to \((\mathrm{x} / 1)=[(\mathrm{y}-1) / 2]=[(\mathrm{z}-2) / 3]\) on then image of \(\mathrm{P}\) is (A) \(\overline{(-1,0,-7)}\) (B) \((-1,0,7)\) (C) \((1,0,7)\) (D) \((1,0,-7)\)
Chapter 16: Problem 1547
\(\mathrm{P}(1,6,3)\) to \((\mathrm{x} / 1)=[(\mathrm{y}-1) / 2]=[(\mathrm{z}-2) / 3]\) on then image of \(\mathrm{P}\) is (A) \(\overline{(-1,0,-7)}\) (B) \((-1,0,7)\) (C) \((1,0,7)\) (D) \((1,0,-7)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe foot of the perpendicular and perpendicular distance from point \((1,2,3)\) to plane \(x-2 y+2 z=5\) is and respectively (A) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (B) \([\\{(-11) / 9\\},\\{(-14) / 9\\},\\{(-31) / 9\\}],(2 / 3)\) (C) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (D) \([(11 / 9),(14 / 9),\\{(-31) / 9\\}],(2 / 3)\)
The points which are at 5 unit dist. from \((2,-1,3)\) to \(\underline{\mathrm{r}}=(-2,2,3)+\mathrm{k}(4,-3,0), \mathrm{k} \in \mathrm{R}\) is (A) \((6,-4,3),(-2,-2,3)\) (B) \((6,-4,0),(-2,2,3)\) (C) \((6,-4,3),(-2,2,3)\) (D) None of these
In \(\triangle \mathrm{ABC}\), if mid points of \(\underline{\underline{A B}}\) and \(\underline{\mathrm{A} \mathrm{C}}\) are \(\mathrm{D}\) and \(\mathrm{E}\) respectively, then \(\underline{\mathrm{BE}}+\underline{\mathrm{DC}}=\) (A) \((3 / 2) \underline{\mathrm{BC}}\) (B) \((2 / 3) \underline{\mathrm{BE}}\) (C) \((3 / 2) \mathrm{BE}\) (D) \((2 / 3) \mathrm{BC}\)
Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)
The equation of plane passing through the intersection of the planes \(\mathrm{x}-\mathrm{y}+\mathrm{z}=1\) and \(\mathrm{x}+\mathrm{y}-\mathrm{z}=1\) and perpendicular to \(\mathrm{x}-2 \mathrm{y}+\mathrm{z}=2\) is (A) \(x+3 y+z=3\) (B) \(3 x+y-z=3\) (C) \(x-3 y-z=3\) (D) \(x-3 y+z=3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.