Chapter 16: Problem 1551
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
Chapter 16: Problem 1551
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of plane which is passing through \((2,1,3)\) and having equal \(X\) and Y-intercept and \(Z\) -intercept 14 is (A) \(11 \mathrm{x}-11 \mathrm{y}+3 \mathrm{z}=42\) (B) \(11 \mathrm{x}+11 \mathrm{y}+3 z=42\) (C) \(11 \mathrm{x}+11 \mathrm{y}-3 \mathrm{z}=42\) (D) \(11 \mathrm{x}+11 \mathrm{y}+3 \mathrm{z}+42=0\)
If angle between two unit vectors \(\underline{a} \& \underline{b}\) is \(\alpha\), then \(|\underline{\mathrm{a}}-\underline{\mathrm{b}} \cos \alpha|=0<\alpha<(\pi / 2)\) (A) \(\sin \alpha\) (B) \(\sin (\alpha / 2)\) (C) \(\sin 2 \alpha\) (D) \(\sin ^{2}(\alpha / 2)\)
Lines \(\underline{r}=(2,1,3)+\mathrm{k}(1,-1,1)\) and \(\underline{\mathrm{r}}=(3,0,4)+\mathrm{k}(-1,1,-1)\) are \((\mathrm{k} \in \mathrm{R})\) (A) coincident (B) skew (C) Intersecting (D) Parallel
Equation of line passes through \((-3,4,7)\) with direction \((5,2,8)\) is (A) \([(x-3) \overline{/ 5}]=[(y-4) / 2]=[(z-7) / 8]\) (B) \([(x+3) / 5]=[(y-4) / 2]=[(z-7) / 8]\) (C) \(x-3=y-4=z-7\) (D) \(x+3=y-4=z-7\)
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.