Chapter 16: Problem 1551
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
Chapter 16: Problem 1551
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
All the tools & learning materials you need for study success - in one app.
Get started for freeIf length each sides of cube is one unit, then shortest distance between diagonal \(\underline{\mathrm{OO}^{\prime}}\) and one edge \(\underline{\mathrm{AB}}^{\prime}\) which is non-co-planer to \(\underline{\mathrm{OO}}^{\prime}\) is (A) \((1 / 2)\) (B) \((1 / \sqrt{2})\) (C) \(\sqrt{2}\) (d) 2
Line \([(x+1) / 2]=[(y-2) / 2]=[(z+3) /(-1)]\) and \([(\mathrm{x}-1) / 3]=[(\mathrm{z}-2) / 1], \mathrm{y}=-1\) angle between two line (A) \(\cos ^{-1}[\sqrt{(10)} /(90)]\) (B) \(\cos ^{-1}[5 / \sqrt{(90)}]\) (C) \(\cos ^{-1}(1 / 6)\) (D) \(\cos ^{-1}[\sqrt{(10) / 9]}\)
The unit vector which is perpendicular to the vector \((2,4,-3)\) and which is in \(\mathrm{YZ}\) plane is (A) \(\pm[0,(5 / 3), 4]\) (B) \(\pm(1 / 5)(0,3,4)\) (C) \((1 / 5)(0,3,4)\) (D) \((1 / 5)(0,-3,-4)\)
If plane \(2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=-3\) express in form of \(x \cos \alpha+y \cos \beta+z \cos \gamma=p\), then perpendicular distance from origin to the plane is foot of perpendicular is and direction cosine is (A) \(1,[-(2 / 3),(2 / 3),-\overline{(1 / 3)}],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (B) \(2,[-(2 / 3),(2 / 3),-(1 / 3)],-(2 / 3),(2 / 3),\\{(-1) / 3\\}\) (C) \(1,[(2 / 3),(2 / 3),-(1 / 3)],(2 / 3),(2 / 3),(1 / 3)\) (D) None of these
If vector \(\underline{r}\) forms an angle \(\alpha, \beta, \gamma\) with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) -axis then \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\) (A) 1 (B) 2 (C) \(-1\) (D) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.