Chapter 16: Problem 1554
Lines \([\\{(\mathrm{k}+3),-\mathrm{k}-1, \mathrm{k}+1\\} / \mathrm{k} \in \mathrm{R}\\},\\{(2 \mathrm{k}, 0,3 \mathrm{k}-3) / \mathrm{k} \in \mathrm{R}\\}\) are (A) parallel (B) Intersecting (C) coincident (D) skew
Chapter 16: Problem 1554
Lines \([\\{(\mathrm{k}+3),-\mathrm{k}-1, \mathrm{k}+1\\} / \mathrm{k} \in \mathrm{R}\\},\\{(2 \mathrm{k}, 0,3 \mathrm{k}-3) / \mathrm{k} \in \mathrm{R}\\}\) are (A) parallel (B) Intersecting (C) coincident (D) skew
All the tools & learning materials you need for study success - in one app.
Get started for freeIf angle between two units vectors \(\underline{a}\) and \(\underline{b}\) is \(\theta\), then \(\sin (\theta / 2)=\) (A) \(|\underline{a}+\underline{b}|\) (B) \((1 / 2)|\underline{a}-\underline{b}|\) (C) \(|\underline{a}-\underline{b}|\) (D) \((1 / 2)|\underline{a}+\underline{b}|\)
\(\underline{\mathrm{x}}=(2,-6,3), \mathrm{y}=(1,2,-2)\) and \(\underline{\mathrm{x}}^{\wedge} \mathrm{y}=\theta\), then \(\sin \theta=\) (A) \([21 / \sqrt{(185)}]\) (B) \(-[\sqrt{(185) / 21]}\) (C) \(-[21 / \sqrt{(185)}]\) (D) \([\sqrt{(185) / 21]}\)
For vector \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) if each vector forms an angle \((\pi / 3)\) with remaining two vectors and \(|\underline{a}|=1,|\underline{b}|=2,|\underline{c}|=3\), then \(|\underline{a}+\underline{b}+\underline{c}|=\) (A) \(\sqrt{17}\) (B) 0 (C) 5 (D) \(\sqrt{5}\)
If \(\ell+\mathrm{m}+\mathrm{n}=0, \ell^{2}-\mathrm{m}^{2}+\mathrm{n}^{2}=0\) and if the direction cosine of two lines are the solution of the given equation, then angle between two line is (A) \((\pi / 2)\) (B) \((\pi / 3)\) (C) \((\pi / 4)\) (D) \((\pi / 6)\)
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
What do you think about this solution?
We value your feedback to improve our textbook solutions.