Chapter 16: Problem 1554
Lines \([\\{(\mathrm{k}+3),-\mathrm{k}-1, \mathrm{k}+1\\} / \mathrm{k} \in \mathrm{R}\\},\\{(2 \mathrm{k}, 0,3 \mathrm{k}-3) / \mathrm{k} \in \mathrm{R}\\}\) are (A) parallel (B) Intersecting (C) coincident (D) skew
Chapter 16: Problem 1554
Lines \([\\{(\mathrm{k}+3),-\mathrm{k}-1, \mathrm{k}+1\\} / \mathrm{k} \in \mathrm{R}\\},\\{(2 \mathrm{k}, 0,3 \mathrm{k}-3) / \mathrm{k} \in \mathrm{R}\\}\) are (A) parallel (B) Intersecting (C) coincident (D) skew
All the tools & learning materials you need for study success - in one app.
Get started for freeThe co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
The distance of a variable plane from origin to plane is \(\mathrm{p}\) and the Variable plane intersects the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), then the point of intersection of given plane and the plane parallel to the co-ordinate plane is on \(\left(1 / \mathrm{x}^{2}\right)+\left(1 / \mathrm{y}^{2}\right)+\left(1 / \mathrm{z}^{2}\right)=\) (A) \(\mathrm{p}^{2}\) (B) \(\left(1 / \mathrm{p}^{2}\right)\) (C) \(p\) (D) \((1 / \mathrm{p})\)
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
If the centroid of \(\triangle \mathrm{ABC}\) and \(\Delta \mathrm{PQR}\) is \(\mathrm{G}\) and \(\mathrm{G}^{\prime}\) respectively then \(\underline{\mathrm{AP}}+\underline{\mathrm{BQ}}+\underline{\mathrm{CR}}=\) (A) \(\mathrm{GG}^{\prime}\) (B) \(3 \underline{\mathrm{GG}^{\prime}}\) (C) \(2 \underline{\mathrm{GG}^{\prime}}\) (D) \(4 \underline{\mathrm{GG}^{\prime}}\)
The equation of plane passing through the intersection of planes \(\mathrm{x}+\mathrm{y}+\mathrm{z}+1=0\) and \(\mathrm{x}-3 \mathrm{y}+\mathrm{z}+3=0\) and parallel to \(2 \mathrm{x}=\mathrm{y}=2 \mathrm{z}\) is (A) \(x-y+z+2=0\) (B) \(x-y-z-2=0\) (C) \(x+y-3+2=0\) (D) \(x+y+z+2=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.