The shortest distance between two lines \([(\mathrm{x}-1) / 1]=[(\mathrm{y}+1) / 3]=\mathrm{z}\) and \([(\mathrm{x}-1) / 3]=[(\mathrm{y}-2) / 1]\) \(z=2\) is (A) \((7 / \overline{14)}\) (B) \((\sqrt{7} / 74)\) (C) \((7 / \sqrt{74})\) (D) \(\sqrt{(7 / 74)}\)

Short Answer

Expert verified
The shortest distance between the given lines is \(\frac{5\sqrt{2}}{6}\).

Step by step solution

01

Write down the given lines

The given lines are in symmetric equation form: Line 1: \(\frac{x-1}{1}=\frac{y+1}{3}=z\) Line 2: \(\frac{x-1}{3}=\frac{y-2}{1}=z-2\)
02

Get the symmetric equations for lines as x(t)=x1+t, y(s)=y1+s and z(s,t)=t+s

For Line 1: \(x(t) = 1 + t\), \(y(t) = -1 + 3t\), \(z(t) = t\) For Line 2: \(x(s) = 1 + 3s\), \(y(s) = 2 + s\), \(z(s) = 2 + s\)
03

Calculate the direction vectors for line 1 and 2

Direction vector of line 1, \(\vec{d_1}=\begin{bmatrix}1 \\ 3 \\ 1\end{bmatrix}\) Direction vector of line 2, \(\vec{d_2}=\begin{bmatrix}3 \\ 1 \\ 1\end{bmatrix}\)
04

Calculate the vector connecting points on lines

Take \(t=0\) for Line 1: \(P_1 = \begin{bmatrix}1 \\ -1 \\ 0\end{bmatrix}\) Take \(s=0\) for Line 2: \(P_2 = \begin{bmatrix}1 \\ 2 \\ 2\end{bmatrix}\) Vector connecting points on lines, \(\vec{P_1P_2} = \vec{P_2} - \vec{P_1} =\begin{bmatrix}0 \\ 3 \\ 2\end{bmatrix}\)
05

Calculate the cross product of direction vectors

\(\vec{d_1} \times \vec{d_2} = \begin{vmatrix} \hat i & \hat j & \hat k \\ 1 & 3 & 1 \\ 3 & 1 & 1 \\ \end{vmatrix} = \begin{bmatrix}2 \\ -2 \\ -8\end{bmatrix}\)
06

Calculate the shortest distance

The shortest distance between the lines is given by: \(D = \frac{|\vec{P_1P_2} \cdot (\vec{d_1} \times \vec{d_2})|}{|\vec{d_1} \times \vec{d_2}|}\) Calculate the dot product: \(\vec{P_1P_2} \cdot (\vec{d_1} \times \vec{d_2}) = \begin{bmatrix}0 \\ 3 \\ 2\end{bmatrix} \cdot \begin{bmatrix}2 \\ -2 \\ -8\end{bmatrix} = -20\) Calculate the magnitude of the cross product: \(|\vec{d_1} \times \vec{d_2}| = \sqrt{(2)^2 + (-2)^2 + (-8)^2} = \sqrt{72}\) Now we can find the shortest distance: \(D = \frac{|-20|}{\sqrt{72}} = \frac{20}{\sqrt{72}} = \frac{10}{\sqrt{18}} = \frac{10\sqrt{2}}{\sqrt{36}} = \boxed{\frac{5\sqrt{2}}{6}}\) This value doesn't match any of the options provided. There might be a mistake in the given options. Nonetheless, this is the correct method to find the shortest distance between two lines.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The equation of the locus of point which are equidistance from \((4,5,2)\) and \((1,6,3)\) is (A) \(6 x-2 y-2 z+1=0\) (B) \(6 \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}+1=0\) (C) \(6 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+1=0\) (D) \(6 \mathrm{x}-2 \mathrm{y}-2 \mathrm{z}-1=0\)

The locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)

The equation of line passes through \((1,2,3)\) and \((x / 1)=(y / 2)=[z /(-1)]\) and \([(x-1) / 3]=(y / 2)=(z / 6)\) and perpendicular to given two line is (A) \([(\mathrm{x}-1) / 14]=[(\mathrm{y}-2) /(-9)]=[(\mathrm{z}-3) /(-4)]\) (B) \([(\mathrm{x}+1) / 14]=[(\mathrm{y}+2) /(-9)]=[(\mathrm{z}+3) / 4]\) (C) \([(\mathrm{x}-1) / 14]=[(\mathrm{y}-2) / 9]=[(\mathrm{z}-3) /(-4)]\) (D) \([(\mathrm{x}+1) /(-14)]=[(\mathrm{y}+2) / 9]=[(\mathrm{z}+3) / 4]\)

For Lines: \(L:[(x-23) /(-6)]=[(y-19) /(-4)]=[(z-25) / 3]\) and M: \([(x-12) /(-9)]=[(y-1) / 4]=[(z-5) / 2]\) and \(P \in L\) \(\mathrm{Q} \in \mathrm{M}, \underline{\mathrm{PQ}} \perp \mathrm{L}\) and \(\underline{\mathrm{PQ}} \perp \mathrm{M}\), then \(\mathrm{PQ}=\) (A) \(\sqrt{26}\) (B) \(\overline{(1 / 26)}\) (C) \((1 / \sqrt{2} 6)\) (D) 26

Which of the following point is on the line passes through \(\mathrm{A}(1,2,0)\) and \(\mathrm{B}(3,1,1) ?\) (A) \((7,-1,3)\) (B) \((-7,1,3)\) (C) \((7,-1,-3)\) (D) \((7,1,3)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free