shortest distance between two lines \(\underline{\mathrm{r}}=(4,-1,0)+\mathrm{k}(1,2,-3), \mathrm{k} \in \mathrm{R}\) and \(\underline{\mathrm{r}}=(1,-1,2)+\mathrm{k}(2,4,-5), \mathrm{k} \in \mathrm{R}\) is (A) \((6 / \sqrt{5})\) (B) \((6 / 5)\) (C) \((\sqrt{6} / 5)\) (D) \(\sqrt{(6 / 5)}\)

Short Answer

Expert verified
The shortest distance between the two lines is \(\dfrac{6\sqrt{86}}{86}\).

Step by step solution

01

Identify the direction ratios of the lines

The given lines can be written in the vector form as: Line 1: \(\underline{\mathrm{r}}_1=(4,-1,0)+\mathrm{k_1}(1,2,-3)\) Line 2: \(\underline{\mathrm{r}}_2=(1,-1,2)+\mathrm{k_2}(2,4,-5)\) The direction ratios for Line 1 are given by the vector \(\textbf{a}\): \(\langle 1, 2, -3 \rangle\) and for Line 2 are given by the vector \(\textbf{b}\): \(\langle 2, 4, -5 \rangle\).
02

Calculate the cross product of direction vectors

To find the vector perpendicular to both lines, calculate the cross product of \(\textbf{a}\) and \(\textbf{b}\): \(\textbf{c}=\textbf{a}\times \textbf{b}=\left\langle 1\times(-5)-2\times(-3), 2\times2-1\times(-5), -3\times2-4\times1\right\rangle\) = \(\left\langle 1, 9, -2 \right\rangle\)
03

Calculate the magnitude of the cross product vector

Compute the magnitude of the cross product vector \(\textbf{c}\): \(|\textbf{c}|=\sqrt{1^2+9^2+(-2)^2}=\sqrt{86}\)
04

Calculate the vector connecting the points on the two lines

Choose a point on each line and find the vector connecting these points. Points \((4,-1,0)\) on Line 1 and \((1,-1,2)\) on Line 2 are selected. The vector connecting these points is: \(\textbf{p}=\left\langle 1-4, -1-(-1), 2-0 \right\rangle = \left\langle -3, 0, 2 \right\rangle\)
05

Compute the shortest distance

Calculate the shortest distance between the two lines using the formula: \(d=\frac{\left|\textbf{p}\cdot\textbf{c}\right|}{|\textbf{c}|}\) \(d=\frac{\left|\left\langle -3, 0, 2 \right\rangle\cdot\left\langle 1, 9, -2 \right\rangle\right|}{\sqrt{86}}\) \(d=\frac{\left|-3(1)+0(9)+2(-2) \right|}{\sqrt{86}}\) \(d=\frac{|6|}{\sqrt{86}}\)
06

Simplify the result by rationalizing the denominator

Simplify the expression by rationalizing the denominator (that is, multiplying both the numerator and denominator by a number such that the denominator becomes rational): \(d=\frac{6}{\sqrt{86}} \times \frac{\sqrt{86}}{\sqrt{86}}=\frac{6\sqrt{86}}{86}\) \(d=\frac{6\sqrt{86}}{86}\) None of the given options matches with the calculated value. Therefore, there might be an error in the answer choices given.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Direction cosine of line \([(4-x) / 7]=[(y+9) / 5]=[(3 z+8) / 2]\) is (A) \(-[21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (B) \([21 / \sqrt{(670)}],[15 / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (C) \([21 / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[2 / \sqrt{(670)}]\) (D) \([(-21) / \sqrt{(670)}],[(-15) / \sqrt{(670)}],[(-2) / \sqrt{(670)}]\)

The unit vector which is perpendicular to \((2,-4,3)\) and \((5,0,1)\), is (A) \([\\{4 / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (B) \([\\{(-4) / \sqrt{(585)\\}},\\{13 / \sqrt{(585)\\}},\\{(-20) / \sqrt{(585)\\}}]\) (C) \([\\{(-4) / \sqrt{(585)\\}},\\{(-13) / \sqrt{(585)\\},\\{20 / \sqrt{(585})\\}]}\) (D) \([\\{(-4) / \sqrt{(585)\\},\\{13 / \sqrt{(585})\\},\\{20 / \sqrt{(585})\\}]}\)

The equation of plane passing through \((1,6,-4)\) and containing \([(x-1) / 2]=[(y-2) /(-3)]=[(z-3) /(-1)]\) is (A) \(25 \mathrm{x}+14 \mathrm{y}+8 \mathrm{z}=77\) (B) \(25 \mathrm{x}+14 \mathrm{y}-8 \mathrm{y}=77\) (C) \(25 \mathrm{x}-14 \mathrm{y}-8 \mathrm{z}=77\) (D) \(25 x+14 y+8 y=-77\)

For vectors \(\underline{a}, \underline{b}, c \underline{c}\) if each vector is perpendicular to the sum of remaining two vectors and \(|\underline{\mathrm{a}}|=3,|\underline{\mathrm{b}}|=4,|\underline{\mathrm{c}}|=5\), then \(|\underline{a}+\underline{b}+\underline{c}|=\) (A) \(2 \sqrt{2}\) (B) \(3 \sqrt{2}\) (C) \(4 \sqrt{2}\) (D) \(5 \sqrt{2}\)

If \(\ell+\mathrm{m}+\mathrm{n}=0, \ell^{2}-\mathrm{m}^{2}+\mathrm{n}^{2}=0\) and if the direction cosine of two lines are the solution of the given equation, then angle between two line is (A) \((\pi / 2)\) (B) \((\pi / 3)\) (C) \((\pi / 4)\) (D) \((\pi / 6)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free