Chapter 16: Problem 1565
If \(4 x-81 y+9 z=1\) is equation plane, then sum of its intercepts is (A) \([(1017) \overline{/(2916)}]\) (B) \([(1017) /(2916)]\) (C) \([(101) /(2916)]\) (D) \([(-1017) /(2916)]\)
Chapter 16: Problem 1565
If \(4 x-81 y+9 z=1\) is equation plane, then sum of its intercepts is (A) \([(1017) \overline{/(2916)}]\) (B) \([(1017) /(2916)]\) (C) \([(101) /(2916)]\) (D) \([(-1017) /(2916)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
If lines \([(\mathrm{x}-1) / 2]=[(\mathrm{y}-3) / 4]=\mathrm{z}\) and \([(x-4) / 3]=[(1-y) / 2]=[(z-1) / 1]\) are co-planer, then the equation of plane containing these two lines is (A) \(6 \mathrm{x}+\mathrm{y}+16 \mathrm{z}=9\) (B) \(6 \mathrm{x}+\mathrm{y}-16 \mathrm{z}=9\) (C) \(6 \mathrm{x}-\mathrm{y}-16 \mathrm{z}=9\) (D) \(6 \mathrm{x}-\mathrm{y}+16 \mathrm{z}=9\)
The equation of plane which is perpendicular to the planes \(3 \mathrm{x}+\mathrm{y}+\mathrm{z}=0\) and \(\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=5\) and passing through \((1,3,5)\) is (A) \(x+2 y \bar{z}=0\) (B) \(x-2 y-z=0\) (C) \(x-2 y+z=0\) (D) \(x+2 y-z=0\)
Perpendicular distance between line \(\underline{r}=(2,-2,3)+k(1,-1,4), k \in R\) and \(x+5 y+z=5\) is (A) \((10 / 3)\) (B) \([10 /(3 \sqrt{3})]\) (C) \((10 / \sqrt{3})\) (D) 10
What do you think about this solution?
We value your feedback to improve our textbook solutions.