Chapter 16: Problem 1565
If \(4 x-81 y+9 z=1\) is equation plane, then sum of its intercepts is (A) \([(1017) \overline{/(2916)}]\) (B) \([(1017) /(2916)]\) (C) \([(101) /(2916)]\) (D) \([(-1017) /(2916)]\)
Chapter 16: Problem 1565
If \(4 x-81 y+9 z=1\) is equation plane, then sum of its intercepts is (A) \([(1017) \overline{/(2916)}]\) (B) \([(1017) /(2916)]\) (C) \([(101) /(2916)]\) (D) \([(-1017) /(2916)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf perpendicular distance from \((0,0,0)\) to the variable plane is \(\mathrm{p}\) and variable plane intersects the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), the centroid of \(\Delta \mathrm{ABC}\) is on \(\left(1 / \mathrm{x}^{2}\right)+\left(1 / \mathrm{y}^{2}\right)+\left(1 / \mathrm{z}^{2}\right)=\) (A) \(\left(9 / \mathrm{p}^{2}\right)\) (B) \(\left(\mathrm{p}^{2} / 9\right)\) (C) \((\mathrm{p} / 9)\) (D) \((9 / \mathrm{p})\)
The foot of the perpendicular and perpendicular distance from point \((1,2,3)\) to plane \(x-2 y+2 z=5\) is and respectively (A) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (B) \([\\{(-11) / 9\\},\\{(-14) / 9\\},\\{(-31) / 9\\}],(2 / 3)\) (C) \([(11 / 9),(14 / 9),(31 / 9)],(2 / 3)\) (D) \([(11 / 9),(14 / 9),\\{(-31) / 9\\}],(2 / 3)\)
Line \([(x-1) / c]=[(y+3) /(-1)]=[(z-3) / 2]\) and \([(x-3) / 6]=[(y-1) / 3]=[(4-z) / 6]\) if direction are same then \(\mathrm{c}=\) (A) \(-2\) (B) 2 (C) \((1 / 3)\) (D) \(-(1 / 3)\)
If the vertices of quadrilateral are \((1,1,1),(-2,4,1)\) \((-1,5,5),(2,2,5)\) then it is (A) rectangle (B) square (C) parallelogram (D) rhombus
If angle between \(\underline{a}\) and \(\underline{b}\) is \(\theta\), then \([(|\underline{\mathbf{a}} \times \underline{\mathrm{b}}|) /(\underline{\mathrm{a}} \cdot \underline{\mathrm{b}})]=\) \(\begin{array}{llll}(\text { A })-\cot \theta & \text { (B) }-\tan \theta & \text { (C) } \tan \theta & \text { (D) } \cot \theta\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.