Chapter 16: Problem 1575
For points \(\mathrm{A}(1,2,3), \mathrm{B}(5,4,1)\), the equation of plane which is perpendicular bisector of \(\underline{A B}\) is (A) \(x+2 y-7+z=0\) (B) \(2 x+y-z=7\) (C) \(x+2 y+z+7=0\) (D) \(2 x-2 y-z=7\)
Chapter 16: Problem 1575
For points \(\mathrm{A}(1,2,3), \mathrm{B}(5,4,1)\), the equation of plane which is perpendicular bisector of \(\underline{A B}\) is (A) \(x+2 y-7+z=0\) (B) \(2 x+y-z=7\) (C) \(x+2 y+z+7=0\) (D) \(2 x-2 y-z=7\)
All the tools & learning materials you need for study success - in one app.
Get started for free\([(x-1) / 3]=[(y+1) / 2]=[(z-1) / 5]\) and \([(\mathrm{x}-2) / 4]=[(\mathrm{y}-1) / 3]=[(\mathrm{z}+1) /(-2)]\) lines are (A) parallel (B) coincident (C) Intersecting (D) skew
The co-ordinates of the points of trisection of \(\underline{A B}\) is where \(\mathrm{A}(-5,7,2), \mathrm{B}(1,3,7)\) (A) \([-1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (B) \([1,4,(16 / 3)][-3,(11 / 2),(11 / 3)]\) (C) \([-1,4,(16 / 3)][-3,\\{(-11) / 2\\},\\{(-11) / 3\\}]\) (D) None of these
The locus of point of the plane passing through \((\alpha, \beta, \gamma)\) and intersect the axis in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the plane which is parallel to such plane is (A) \((\mathrm{x} / \alpha)+(\mathrm{y} / \beta)+(\mathrm{z} / \gamma)=1\) (B) \((\alpha / x)+(\beta / y)+(\gamma / z)=1\) (C) \(x+y+z=1\) (D) \(\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha \beta \gamma\)
If angle between two unit vectors \(\underline{a} \& \underline{b}\) is \(\alpha\), then \(|\underline{\mathrm{a}}-\underline{\mathrm{b}} \cos \alpha|=0<\alpha<(\pi / 2)\) (A) \(\sin \alpha\) (B) \(\sin (\alpha / 2)\) (C) \(\sin 2 \alpha\) (D) \(\sin ^{2}(\alpha / 2)\)
\(\underline{\mathrm{x}}=(2,-6,3), \mathrm{y}=(1,2,-2)\) and \(\underline{\mathrm{x}}^{\wedge} \mathrm{y}=\theta\), then \(\sin \theta=\) (A) \([21 / \sqrt{(185)}]\) (B) \(-[\sqrt{(185) / 21]}\) (C) \(-[21 / \sqrt{(185)}]\) (D) \([\sqrt{(185) / 21]}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.