Chapter 16: Problem 1577
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
Chapter 16: Problem 1577
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor \(\mathrm{A}(7,-3,1)\) and \(\mathrm{B}(4,9,8)\), the point that divides \(\underline{\mathrm{AB}}\) from \(\mathrm{B}\) in the ratio \(2: 5\) is (A) \([(34 / 7),(39 / 7 \overline{),(42} / 7)]\) (B) \([(34 / 7),(39 / 7),\\{(-42) / 7\\}]\) (C) \([\\{(-34) / 7\\},(39 / 7),\\{(-42) / 7\\}]\) (D) \([\\{(-34) / 7\\},\\{(-39) / 7\\},\\{(-42) / 7\\}]\)
\([(2-3 \mathrm{x}) / 6]=[(\mathrm{y}+1) / 2]=[(1-z) /(-2)]\) direction of line \(\overline{(A)}+2,2,2\) (B) \(-1,1,1\) (C) \(-3,2,2\) (D) \(6,2,-2\)
Lines \(\underline{r}=(1,3,5)+k(-1,2,3), k \in R\) and \(\underline{r}=(1,3,1)+\mathrm{k}(1,-2,3), \mathrm{k} \in \mathrm{R}\) are (A) coincident (B) parallel (C) skew (D) perpendicular
If \((\underline{a}+\underline{b}) \cdot(\underline{a}-\underline{b})=63\) and \(|\underline{a}|=8|\underline{b}|\), then \(|\underline{a}|=\) (A) 8 (B) 64 (C) 16 4
If vector \(\underline{x}\) forms an equal angle \(\alpha\) with three axis and \(|\underline{x}|=9\) then \(\alpha=\quad\) where \(0<\alpha<(\pi / 2)\) (A) \(\cos ^{-1}(1 / \sqrt{2})\) (B) \(\cos ^{-1}(1 / 9)\) (C) \(\cos ^{-1}(1 / \sqrt{3})\) (D) \(\cos ^{-1}(1 / 3)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.