Chapter 16: Problem 1577
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
Chapter 16: Problem 1577
If two planes \(\underline{r}(2,-b, 1)=4\) and \(\underline{r}(4,-1,-c)=6\) are parallel then \(\mathrm{b}, \mathrm{c}=\) \((\) A \()-(1 / 2),-2\) (B) \((1 / 2), 2\) (C) \(-(1 / 2), 2\) (D) \((1 / 2),-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe equation of plane passing through the intersection of the planes \(\mathrm{x}-\mathrm{y}+\mathrm{z}=1\) and \(\mathrm{x}+\mathrm{y}-\mathrm{z}=1\) and perpendicular to \(\mathrm{x}-2 \mathrm{y}+\mathrm{z}=2\) is (A) \(x+3 y+z=3\) (B) \(3 x+y-z=3\) (C) \(x-3 y-z=3\) (D) \(x-3 y+z=3\)
shortest distance between two lines \(\underline{\mathrm{r}}=(4,-1,0)+\mathrm{k}(1,2,-3), \mathrm{k} \in \mathrm{R}\) and \(\underline{\mathrm{r}}=(1,-1,2)+\mathrm{k}(2,4,-5), \mathrm{k} \in \mathrm{R}\) is (A) \((6 / \sqrt{5})\) (B) \((6 / 5)\) (C) \((\sqrt{6} / 5)\) (D) \(\sqrt{(6 / 5)}\)
Direction cosine of line \(\mathrm{x}=3-2 \mathrm{y}, \mathrm{z}=2 \mathrm{y}-1\) is (A) \([\\{(-2) / 3\\},(1 / 3),(2 / 3)]\) (B) \([\\{(-2) / 3\\},\\{(-1) / 3\\},(2 / 3)]\) (C) \([(2 / 3),(1 / 3),(2 / 3)]\) (D) None of these
\(\mathrm{P}(1,6,3)\) to \((\mathrm{x} / 1)=[(\mathrm{y}-1) / 2]=[(\mathrm{z}-2) / 3]\) on then image of \(\mathrm{P}\) is (A) \(\overline{(-1,0,-7)}\) (B) \((-1,0,7)\) (C) \((1,0,7)\) (D) \((1,0,-7)\)
The equation of plane passing through the lines \((\mathrm{x} / 2)=[(\mathrm{y}-1) / 1]=[(\mathrm{z}+2) / 2]\) and \([(2 \mathrm{x}+3) / 4]=[(3-\mathrm{y}) /(-1)]=(\mathrm{z} / 2)\) is (A) \(4 \mathrm{x}+11 \mathrm{y}+14 z=36\) (B) \(\overline{4 x+1} 4 y-11 z=36\) (C) \(4 \mathrm{x}-14 \mathrm{y}-11 \mathrm{z}=36\) (D) \(4 \mathrm{x}-14 \mathrm{y}+11 \mathrm{z}=36\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.