\(\underline{\mathrm{a}}\) and \(\underline{\mathrm{b}}\) non coplanar. \(2 \underline{\mathrm{u}}-\underline{\mathrm{v}}=\underline{\mathrm{w}}\), if \(\underline{\mathrm{u}}=\mathrm{x} \underline{\mathrm{a}}+2 \mathrm{y} \underline{\mathrm{b}}\), \(\underline{v}=-2 y \underline{a}+3 x \underline{b}\) and \(\underline{w}=4 \underline{a}-2 \underline{b}\), find \(x\) and \(y=\) (a) \(\mathrm{x}=(8 / 7), \mathrm{y}=(2 / 7)\) (b) \(x=2, y=3\) (c) \(\mathrm{x}=(4 / 7), \mathrm{y}=(6 / 7)\) (d) \(x=(10 / 7), y=(4 / 7)\)

Short Answer

Expert verified
\( x = \frac{10}{7}, y = \frac{4}{7} \)

Step by step solution

01

Write vectors u, v, and w in terms of a and b

Using the given expressions, we have the following vectors: \( u = x\,a + 2y\,b \) \( v = -2y\,a + 3x\,b \) \( w = 4a - 2b \)
02

Express the vector equation in terms of a and b

We are given that: \( 2u - v = w \) Substitute the expressions for u, v, and w from Step 1: \( 2(x\,a + 2y\,b) - (-2y\,a + 3x\,b) = 4a - 2b \)
03

Simplify the equation

Expand and simplify the left side of the equation: \( 2x\,a + 4y\,b + 2y\,a - 3x\,b = 4a - 2b \) Combine the terms with a and b: \( (2x + 2y)\,a + (4y - 3x)\,b = 4a - 2b \)
04

Compare coefficients of a and b

Since the left and right side of the equation represents the same vector, we can say that the coefficients of a and b are equal: \( 2x + 2y = 4 \) \( 4y - 3x = -2 \)
05

Solve the system of linear equations

We have a system of two linear equations with two variables x and y: 1) \( 2x + 2y = 4 \) 2) \( 4y - 3x = -2 \) We can solve this system by first solving for y in equation 1: \( y = 2 - x \) Now, substitute this expression for y into equation 2: \( 4(2 - x) - 3x = -2 \)
06

Solve for x

Simplify and solve for x: \( 8 - 4x - 3x = -2 \) \( -7x = -10 \) \( x = \frac{10}{7} \)
07

Solve for y

Now, substitute the value of x back into the expression we found for y: \( y = 2 - \frac{10}{7} \) \( y = \frac{4}{7} \)
08

Check the answer in the given options

Comparing our solution with the given options, we find that: \( x = \frac{10}{7}, y = \frac{4}{7} \) This matches option (d).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\underline{a}\) and \(\underline{b}\) are non coplanar and \(5 \underline{u}-3 \underline{\mathrm{v}}=\underline{\mathrm{w}} .\) if \(\underline{u}=\mathrm{ma}+2 \mathrm{nb}\) and \(\underline{\mathrm{v}}=-2 \mathrm{na}+3 \mathrm{mb}\) and \(\underline{\mathrm{w}}=4 \underline{\mathrm{a}}-2 \underline{\mathrm{b}} .\) find \(\mathrm{m}=\underline{\mathrm{n}}=\) (a) \((1 / 2),(1 / 4)\) (b) \((1 / 2),(1 / 3)\) (c) \((1 / 3),(1 / 4)\) (d) \(-(1 / 2),-(1 / 4)\)

if \(\underline{a} \perp \underline{b}\) then \(\underline{a} \times[\underline{a} \times\\{\underline{a} \times(\underline{a} \times \underline{b})\\}]=\) (a) \(-|\underline{a}|^{2} \underline{b}\) (b) \(|\underline{a}|^{4} \underline{b}\) (c) \(-|\underline{a}|^{6} \underline{b}\) (d) \(|a|^{6} \underline{b}\)

\(\underline{\mathrm{a}}\) and \(\underline{\mathrm{b}}\) are unit vector such as \(\underline{\mathrm{a}}+2 \underline{\mathrm{b}}\) and \(5 \underline{\mathrm{a}}-4 \underline{\mathrm{b}}\) are perpendicular, find the angle between \(\underline{a}\) and \(\underline{b}=\) (a) \(15^{\circ}\) (b) \(60^{\circ}\) (c) \(\cos ^{-1}(1 / 3)\) (d) \(\cos ^{-1}(2 / 7)\)

if \(\underline{\mathrm{OA}}=\underline{\mathrm{a}}, \underline{\mathrm{OB}}=\underline{\mathrm{b}}, \underline{\mathrm{OC}}=2 \underline{\mathrm{a}}+3 \underline{\mathrm{b}}, \underline{\mathrm{OD}}=\underline{\mathrm{a}}-2 \underline{\mathrm{b}}\). Length of \(\underline{\mathrm{OA}}\) is three times length of \(\underline{\mathrm{OB}} \& \mathrm{OA}\) is perpendicular to \(\underline{\mathrm{DB}}\) then \((\underline{\mathrm{BD}} \times \underline{\mathrm{AC}}) \cdot(\underline{\mathrm{OD}} \times \underline{\mathrm{OC}})\) is (a) \(7|\underline{\mathrm{a}} \times \underline{\mathrm{b}}|^{2}\) (b) 0 (c) \(7|\underline{a} \times \underline{b}|\) (d) \(42|\underline{\mathrm{a}} \times \underline{\mathrm{b}}|^{2}\)

\(\underline{\mathrm{a}}=(1,-1,0), \underline{\mathrm{b}}=(0,1,-1)\) and \(\underline{\mathrm{c}}=(-1,0,1)\) find the unit vector \(\underline{d}\) Such that \(\underline{\mathrm{a}} \cdot \underline{\mathrm{d}}=0=[\underline{\mathrm{b}} \underline{\mathrm{c}} \underline{\mathrm{d}}]\). (a) \(\pm(1 / \sqrt{6})(1,1,-2)\) (b) \(\pm(1 / \sqrt{3})(1,1,-1)\) (c) \(\pm(1 / \sqrt{3})(1,1,1)\) (d) \(\pm(0,0,1)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free