Chapter 17: Problem 1603
two non zero vectors cross product is zero. Then vectors are (a) coplanar (b) equal vectors (c) origin at one point (d) same ending point
Chapter 17: Problem 1603
two non zero vectors cross product is zero. Then vectors are (a) coplanar (b) equal vectors (c) origin at one point (d) same ending point
All the tools & learning materials you need for study success - in one app.
Get started for freefind the number of vectors in \(\mathrm{R}^{3}\) such the angle between X-axis and vectors are \((\pi / 3)\) (a) 1 (b) 2 (c) 4 (d) infinite times
\(\underline{a}=(1 / \sqrt{1} 0)(3 \underline{i}+\underline{k}) \underline{b}=(1 / 7)(2 \underline{i}+3 j-6 \underline{k})\) evaluate \((2 \underline{\mathrm{a}}-\underline{\mathrm{b}}) \cdot[(\underline{\mathrm{a}} \times \underline{\mathrm{b}}) \times(\underline{\mathrm{a}}+2 \underline{\mathrm{b}})]\) (a) \(-3\) (b) 5 (c) 3 (d) \(-5\)
\(\triangle \mathrm{ABC}\) side \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}\) position vectors are \(\underline{\mathrm{a}}, \underline{\mathrm{b}}\) and \(\underline{\mathrm{c}}\) find the length of line segment from \(\mathrm{A}\) to \(\underline{\mathrm{BC}}\). (a) \([(\underline{\mathrm{b}} \times \underline{\mathrm{c}}) /(\underline{\mathrm{b}}-\underline{\mathrm{c}})]\) (b) \([(|\underline{\mathbf{c}} \times \underline{\mathbf{a}}|) /(|\underline{\mathbf{c}}-\underline{\mathrm{a}}|)]\) (c) \([(|\underline{a} \times \underline{b}+\underline{b} \times \underline{c}+\underline{c} \times \underline{a}|) /(|\underline{b}-\underline{c}|)]\) (d) \([(\mid \underline{\mathrm{a}} \times \underline{\mathrm{b}}+\underline{\mathrm{b}} \times \underline{\mathrm{c}}+\underline{\mathrm{c}} \times \underline{\mathrm{a}}) /(|\underline{\mathrm{b}}+\underline{\mathrm{c}}|)]\)
if \(\underline{a}+m \underline{b}+3 \underline{c},-2 \underline{a}+3 \underline{b}-4 \underline{c}\) and \(\underline{a}-3 \underline{b}-5 \underline{c}\) are coplanar. \(\mathrm{m}=\) (a) 2 (b) \(-1\) (c) 1 (d) \(-(9 / 7)\)
\((1 / \mathrm{c}),(1 / \mathrm{c}),(1 / \mathrm{c})\) is direction cosine of the line then the value of \(\mathrm{c}=\) (a) \(\pm(\overline{1 / 3)}\) (b) \(\pm 3\) (c) \(\pm(1 / \sqrt{3})\) (d) \(\pm \sqrt{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.