\(\underline{\mathrm{a}}=\underline{\mathrm{u}}-\underline{\mathrm{v}}, \underline{\mathrm{b}}=\underline{\mathrm{u}}+\underline{\mathrm{v}},|\underline{\mathrm{u}}|=|\underline{\mathrm{u}}|^{2}\) and \(|\underline{\mathrm{u}}|=|\underline{\mathrm{v}}|=2\) find \(|\underline{a} \times \underline{b}|=\) (b) \(\left.\sqrt{[} 4-(\underline{\mathrm{u}} \cdot \underline{\mathrm{v}})^{2}\right]\) (c) \(\sqrt{\left[16-(\underline{\mathrm{u}} \cdot \underline{\mathrm{v}})^{2}\right]}\) (d) \(\sqrt{\left[4-(\underline{\mathrm{u}} \cdot \underline{\mathrm{v}})^{2}\right]}\)

Short Answer

Expert verified
The short answer is: \(|\underline{a}\times\underline{b}| = \sqrt{\left[16-(\underline{\mathrm{u}} \cdot \underline{\mathrm{v}})^{2}\right]}\) (option c).

Step by step solution

01

Expressing \(\underline{a}\) and \(\underline{b}\) in terms of \(\underline{u}\) and \(\underline{v}\)

We have \(\underline{\mathrm{a}}=\underline{\mathrm{u}}-\underline{\mathrm{v}}\) and \(\underline{\mathrm{b}}=\underline{\mathrm{u}}+\underline{\mathrm{v}}\).
02

Computing the cross product \(\underline{a} \times \underline{b}\)

We have \(\underline{a}\times\underline{b} = (\underline{u}-\underline{v})\times(\underline{u}+\underline{v})\). Expanding this expression using properties of cross product, we get \[ \underline{a}\times\underline{b} = \underline{u}\times\underline{u} + \underline{u}\times\underline{v} - \underline{v}\times\underline{u} - \underline{v}\times\underline{v}. \] Remember that the cross product of a vector with itself is zero. Also, the cross product is anti-commutative, which means \(\underline{v}\times\underline{u}=-\underline{u}\times\underline{v}\). So, we can simplify the expression as: \[ \underline{a}\times\underline{b} = 2(\underline{u}\times\underline{v}). \]
03

Finding the magnitude of \(\underline{a}\times\underline{b}\)

Now, we need to find the magnitude of the cross product, which will be \[ |\underline{a}\times\underline{b}| = 2|\underline{u}\times\underline{v}|. \] Recall that \(|\underline{u}\times\underline{v}|=|\underline{u}||\underline{v}|\sin\theta\). We are given that \(|\underline{\mathrm{u}}|=|\underline{\mathrm{v}}|=2\), so we get \[ |\underline{a}\times\underline{b}| = 2(2)(2)\sin\theta = 8\sin\theta. \]
04

Comparing with the given options

Now let's compare our result with the given options (b), (c), and (d). Notice that each option contains a term of the form \((\underline{u}\cdot\underline{v})^2\). We can use the fact that \(|\underline{u}\times\underline{v}|^2=|\underline{u}|^2|\underline{v}|^2-\left(\underline{u}\cdot\underline{v}\right)^2\) to eliminate this term and find the correct answer. First, we compute \(|\underline{u}\times\underline{v}|^2\): \[ |\underline{u}\times\underline{v}|^2 = \left(8\sin\theta\right)^2=64\sin^2\theta. \] Plugging back the values of \(|\underline{u}|\) and \(|\underline{v}|\), we get \[ 64\sin^2\theta=4^2(2^2)-(\underline{u}\cdot\underline{v})^2. \] Comparing this expression with the given options, we see that it matches option (c): \[ |\underline{a}\times\underline{b}| = \sqrt{\left[16-(\underline{\mathrm{u}} \cdot \underline{\mathrm{v}})^{2}\right]}. \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

if \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) and \(\mathrm{p}, \mathrm{q}, \mathrm{r}\) are reciprocal system of vectors then \(a \times p+b \times q+c \times r\) is equal to (a) \([\mathrm{a} \mathrm{b} \mathrm{c}]\) (b) \(3(a+b+c)\) (c) 0 (d) None of these.

if \(\underline{x}\) and \(y\) is parallel as well as same magnitude then satisfying following condition. (a) \(\underline{x}=y\) (b) \(\underline{x} \neq y\) (c) \(\underline{x}+y=\underline{0}\) (d) \(\underline{x}=y\) or \(\underline{x} \times y=\underline{0}\)

if \(\underline{\mathrm{OA}}=\underline{\mathrm{a}}, \underline{\mathrm{OB}}=\underline{\mathrm{b}}, \underline{\mathrm{OC}}=2 \underline{\mathrm{a}}+3 \underline{\mathrm{b}}, \underline{\mathrm{OD}}=\underline{\mathrm{a}}-2 \underline{\mathrm{b}}\). Length of \(\underline{\mathrm{OA}}\) is three times length of \(\underline{\mathrm{OB}} \& \mathrm{OA}\) is perpendicular to \(\underline{\mathrm{DB}}\) then \((\underline{\mathrm{BD}} \times \underline{\mathrm{AC}}) \cdot(\underline{\mathrm{OD}} \times \underline{\mathrm{OC}})\) is (a) \(7|\underline{\mathrm{a}} \times \underline{\mathrm{b}}|^{2}\) (b) 0 (c) \(7|\underline{a} \times \underline{b}|\) (d) \(42|\underline{\mathrm{a}} \times \underline{\mathrm{b}}|^{2}\)

\(\underline{\mathrm{a}}=(1,0,-1), \underline{\mathrm{b}}=(\mathrm{x}, 1,1-\mathrm{x})\) and \(\underline{\mathrm{c}}=(\mathrm{y}, \mathrm{x}, 1+\mathrm{x}-\mathrm{y})\), \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) is depend on which. (a) \(x\) (b) \(\mathrm{y}\) (c) \(x\) and \(y\) (d) none of these

if \(\underline{a}, \underline{b}\) and \(\underline{c}\) are unit vector, \(|\underline{a}-\underline{b}|^{2}+|\underline{b}-\underline{c}|^{2}+|\underline{c}-\underline{a}|^{2}\) is never greterthen (a) 4 (b) 9 (c) 8 (d) 6

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free