if \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) and \(\mathrm{p}, \mathrm{q}, \mathrm{r}\) are reciprocal system of vectors then \(a \times p+b \times q+c \times r\) is equal to (a) \([\mathrm{a} \mathrm{b} \mathrm{c}]\) (b) \(3(a+b+c)\) (c) 0 (d) None of these.

Short Answer

Expert verified
The correct answer is \(\boxed{\text{(d) None of these}}\).

Step by step solution

01

Evaluate the expression#a \times p+b \times q+c \times r\(

To find the value of \)a \times p+b \times q+c \times r$, we need to perform vector cross products for each term and then add them together.
02

Expand Cross Products

Now, let's expand the three cross products. \[a \times p = a_1 i + a_2 j + a_3 k\] \[b \times q = b_1 i + b_2 j + b_3 k\] \[c \times r = c_1 i + c_2 j + c_3 k\]
03

Add the Cross Products

Now, let's add all the expanded cross products to get our final result. \[(a_1 i + a_2 j + a_3 k) + (b_1 i + b_2 j + b_3 k) + (c_1 i + c_2 j + c_3 k)\] Combine the terms corresponding to \(i\), \(j\), and \(k\): \[(a_1 + b_1 + c_1)i + (a_2 + b_2 + c_2)j + (a_3 + b_3 + c_3)k\] Now, compare this expression with the given options: (a) \([\mathrm{a} \mathrm{b} \mathrm{c}]\) This represents the scalar triple product, which is not equal to the given expression. (b) \(3(a+b+c)\) This represents a scalar multiple of the sum of vectors a, b, and c. This is not equal to the given expression. (c) 0 Option (c) suggests that the expression is equal to the zero vector. To be equal to the zero vector, all the coefficients of \(i, j,\) and \(k\) must be equal to zero: \[a_1 + b_1 + c_1 = 0\] \[a_2 + b_2 + c_2 = 0\] \[a_3 + b_3 + c_3 = 0\] These conditions are not necessarily true for the reciprocal system of vectors. Therefore, the expression is not always equal to zero. (d) None of these Since none of the above three options is equal to the given expression, the correct answer is (d) None of these.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\underline{\mathrm{a}}=(1,0,-1), \underline{\mathrm{b}}=(\mathrm{x}, 1,1-\mathrm{x})\) and \(\underline{\mathrm{c}}=(\mathrm{y}, \mathrm{x}, 1+\mathrm{x}-\mathrm{y})\), \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) is depend on which. (a) \(x\) (b) \(\mathrm{y}\) (c) \(x\) and \(y\) (d) none of these

vector \(\underline{b}=(0,3,4)\) is represented by \(\underline{b}_{1}\) and \(\underline{b}_{2}\) where \(\underline{b}_{1}\) is same direction of \(\underline{a}=(1,1,0)\) and \(\underline{b}_{2}\) is perpendicular, then \(\underline{\mathrm{b}}_{2}=\) (a) \([(3 / 2),(3 / 2), 0]\) (b) \([(3 / 2),\\{(-3) / 2\\}, 4]\) (c) \([0,(3 / 5),(4 / 5)]\) (d) none of these

if \(\underline{a}+m \underline{b}+3 \underline{c},-2 \underline{a}+3 \underline{b}-4 \underline{c}\) and \(\underline{a}-3 \underline{b}-5 \underline{c}\) are coplanar. \(\mathrm{m}=\) (a) 2 (b) \(-1\) (c) 1 (d) \(-(9 / 7)\)

if the angle between \(\underline{a}\) and \(\underline{b}\) is \(\theta\) then \([(|\underline{a} \times \underline{b}|) /(\underline{a} \cdot \underline{b})]=\) (a) \(\tan \theta\) (b) \(-\tan \theta\) (c) \(\cot \theta\) (d) \(-\cot \theta\)

\(\underline{\mathrm{a}} \cdot(2 \underline{\mathrm{b}}+2 \mathrm{c}) \times(3 \underline{\mathrm{a}}+3 \underline{\mathrm{b}}+3 \underline{\mathrm{c}})=\) (a) \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (b) \(3[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (c) \(6[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (d) 0

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free